Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 14(7): e1007517, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30005071

RESUMO

Enhanced protein aggregation and/or impaired clearance of aggregates can lead to neurodegenerative disorders such as Alzheimer's Disease, Huntington's Disease, and prion diseases. Therefore, many protein quality control factors specialize in recognizing and degrading aggregation-prone proteins. Prions, which generally result from self-propagating protein aggregates, must therefore evade or outcompete these quality control systems in order to form and propagate in a cellular context. We developed a genetic screen in yeast that allowed us to explore the sequence features that promote degradation versus aggregation of a model glutamine/asparagine (Q/N)-rich prion domain from the yeast prion protein, Sup35, and two model glycine (G)-rich prion-like domains from the human proteins hnRNPA1 and hnRNPA2. Unexpectedly, we found that aggregation propensity and degradation propensity could be uncoupled in multiple ways. First, only a subset of classically aggregation-promoting amino acids elicited a strong degradation response in the G-rich prion-like domains. Specifically, large aliphatic residues enhanced degradation of the prion-like domains, whereas aromatic residues promoted prion aggregation without enhancing degradation. Second, the degradation-promoting effect of aliphatic residues was suppressed in the context of the Q/N-rich prion domain, and instead led to a dose-dependent increase in the frequency of spontaneous prion formation. Degradation suppression correlated with Q/N content of the surrounding prion domain, potentially indicating an underappreciated activity for these residues in yeast prion domains. Collectively, these results provide key insights into how certain aggregation-prone proteins may evade protein quality control degradation systems.


Assuntos
Doenças Neurodegenerativas/genética , Príons/genética , Agregação Patológica de Proteínas/genética , Domínios Proteicos/genética , Proteólise , Sequência de Aminoácidos/genética , Asparagina/genética , Asparagina/metabolismo , Glutamina/genética , Glutamina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Retrovirology ; 13(1): 64, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27600154

RESUMO

BACKGROUND: The p6 region of the HIV-1 structural precursor polyprotein, Gag, contains two motifs, P7TAP11 and L35YPLXSL41, designated as late (L) domain-1 and -2, respectively. These motifs bind the ESCRT-I factor Tsg101 and the ESCRT adaptor Alix, respectively, and are critical for efficient budding of virus particles from the plasma membrane. L domain-2 is thought to be functionally redundant to PTAP. To identify possible other functions of L domain-2, we examined this motif in dominant viruses that emerged in a group of 14 women who had detectable levels of HIV-1 in both plasma and genital tract despite a history of current or previous antiretroviral therapy. RESULTS: Remarkably, variants possessing mutations or rare polymorphisms in the highly conserved L domain-2 were identified in seven of these women. A mutation in a conserved residue (S40A) that does not reduce Gag interaction with Alix and therefore did not reduce budding efficiency was further investigated. This mutation causes a simultaneous change in the Pol reading frame but exhibits little deficiency in Gag processing and virion maturation. Whether introduced into the HIV-1 NL4-3 strain genome or a model protease (PR) precursor, S40A reduced production of mature PR. This same mutation also led to high level detection of two extended forms of PR that were fairly stable compared to the WT in the presence of IDV at various concentrations; one of the extended forms was effective in trans processing even at micromolar IDV. CONCLUSIONS: Our results indicate that L domain-2, considered redundant in vitro, can undergo mutations in vivo that significantly alter PR function. These may contribute fitness benefits in both the absence and presence of PR inhibitor.


Assuntos
Infecções por HIV/virologia , Protease de HIV/genética , HIV-1/genética , Polimorfismo Genético , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Terapia Antirretroviral de Alta Atividade , Feminino , Células HEK293 , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Protease de HIV/metabolismo , Inibidores da Protease de HIV/uso terapêutico , HIV-1/enzimologia , Humanos , Mutação , Infecções do Sistema Genital/virologia , Fatores de Transcrição , Liberação de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA