Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(5): 6782-6814, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38165540

RESUMO

This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.


Assuntos
Peróxido de Hidrogênio , Purificação da Água , Antagonistas de Receptores de Angiotensina , Purificação da Água/métodos , Cloro , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Desinfecção/métodos , Raios Ultravioleta
2.
Artigo em Inglês | MEDLINE | ID: mdl-38141124

RESUMO

There is high interest in the development of water pollution remediation technologies. Advanced oxidation processes (AOPs) are a promising alternative for the degradation of organic compounds; however, these technologies have been limited mainly by high operating costs and, in some cases, by forming byproducts, which can be more hazardous than the original pollutants. Activated carbon (AC) is a porous material that can be combined with AOP systems in various ways, given its adsorbent and catalytic characteristics. In addition, AC is a flexible, adaptable, and low-cost material. This article presents a bibliometric analysis of AOPs incorporating CA in scientific research and patents; the Scopus database was used to obtain patents and Orbit Express for patents. The most investigated AOPs incorporating AC are photocatalysis processes, Fenton processes, persulfate-based AOP, electrochemical processes, and ozonation. However, it is the persulfate-based AOP that has seen the greatest growth in scientific publications in recent years; this great interest can be related to the synergy that the process has with AC, allowing the degradation of contaminants via radical and non-radical. According to the maturity analysis of scientific publications, photocatalysis, Fenton, electrochemistry, ozonation, and persulfate technologies are in a growth stage and will reach maturity in 2034, 2042, 2040, 2034, and 2035, respectively; these technologies coupled with AC are expected to generate a greater number of patents when they reach maturity.

3.
Chemosphere ; 341: 139988, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669720

RESUMO

The performance of a pilot-scale boron-doped diamond (BDD) reactor through a numerical analysis of reaction rate parameters and enhanced mass transfer has been investigated. The main objective of this research is to evaluate the efficiency of the reactor in mineralizing and degrading caffeine as an emerging contaminant. Based on the kinetic mechanisms and mass transport correlations reported in the literature, two reaction rate kinetic models for caffeine degradation are proposed and analyzed. The models consider different electrolytes (NaCl and Na2SO4) and applied current densities. The kinetic fitting process utilizes the gradient-maximal electrochemical approach, together with orthogonal placement methods, fourth-order Runge-Kutta (RK4) methods, and Nelder & Mead methods for optimization of kinetic parameters and spatial discretization of the material balance. Experimental data obtained from a factorial design with four factors and two levels (24) validate the proposed kinetic models. Caffeine degradation is achieved with NaCl and Na2SO4 electrolytes at concentrations of 60 ppm and 100 ppm, respectively. The corresponding applied loads are 1.5 AhL-1 and 3 AhL-1. Na2SO4 exhibits superior performance with a total organic carbon (TOC) removal efficiency of 99.13%, while NaCl achieves 31.47% mineralization. The behavior of caffeine degradation under the operational and scale conditions demonstrates that NaCl, as a support electrolyte, enables controlled charge transfer (current density) during the degradation process. In contrast, Na2SO4 as a support electrolyte introduces a mixed control of charge and mass transfer. The pilot-scale kinetic parameters obtained in this study provide valuable insights into the support electrolyte dynamics and current density dynamics in BDD-based Electrooxidation (EO) systems, particularly in complex matrix applications. Furthermore, the observed electrical consumption supports the potential application of EO as a viable technology for industrial-scale tertiary wastewater treatment, specifically for caffeine removal.


Assuntos
Cafeína , Cloreto de Sódio , Eletricidade , Indústrias , Cinética
4.
Toxics ; 11(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112593

RESUMO

The textile industry is a global economic driving force; however, it is also one of the most polluting industries, with highly toxic effluents which are complex to treat due to the recalcitrant nature of some compounds present in these effluents. This research focuses on the removal of Chemical Oxygen Demand (COD), color, Total Organic Carbon (TOC), and Ammoniacal Nitrogen (N-NH3) on tannery wastewater treatment through an advanced oxidation process (AOPs) using sodium bicarbonate (NaHCO3), hydrogen peroxide (H2O2) and temperature using a central composite non-factorial design with a surface response using Statistica 7.0 software. All experiments used a 500 mL reactor with 300 mL of tannery wastewater from a company in Cúcuta, Colombia. The physicochemical characterization was done to determine the significant absorbance peaks about the color in the wavelengths between 297 and 669 nm. Statistical analysis found that the concentration of NaHCO3 affects the removal of color and N-NH3; however, it did not affect COD and TOC. The optimal process conditions for removing the different compounds under study were: NaHCO3 1 M, H2O2 2 M, and 60 °C, with efficiencies of 92.35%, 31.93%, 68.85%, and 35.5% N-NH3, COD, color, and TOC respectively. It can be concluded that AOPs using H2O2 and NaHCO3 are recommended to remove color and N-NH3.

5.
Molecules ; 28(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110832

RESUMO

The impacts on the morphological, electrical and hardness properties of thermoplastic polyurethane (TPU) plates using multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers have been investigated, using MWCNT loadings between 1 and 7 wt%. Plates of the TPU/MWCNT nanocomposites were fabricated by compression molding from extruded pellets. An X-ray diffraction analysis showed that the incorporation of MWCNTs into the TPU polymer matrix increases the ordered range of the soft and hard segments. SEM images revealed that the fabrication route used here helped to obtain TPU/MWCNT nanocomposites with a uniform dispersion of the nanotubes inside the TPU matrix and promoted the creation of a conductive network that favors the electronic conduction of the composite. The potential of the impedance spectroscopy technique has been used to determine that the TPU/MWCNT plates exhibited two conduction mechanisms, percolation and tunneling conduction of electrons, and their conductivity values increase as the MWCNT loading increases. Finally, although the fabrication route induced a hardness reduction with respect to the pure TPU, the addition of MWCNT increased the Shore A hardness behavior of the TPU plates.

6.
Curr Opin Environ Sci Health ; 33: 100457, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37020893

RESUMO

The COVID-19 pandemic is considered one of the most significant global disasters in the last years. The rapid increase in infections, deaths, treatment, and the vaccination process has resulted in the excessive use of pharmaceuticals that have entered the environment as micropollutants. Considering the prior information about the presence of pharmaceuticals found in the wastewater of Cali, Colombia, which was collected from 2015 to 2022. The data monitored after the COVID-19 pandemic showed an increase in the concentration of analgesics and anti-inflammatory drugs of up to 91%. This increase was associated with the consumption of pharmaceuticals for mild symptoms, such as fever and pain. Moreover, the increase in concentration of pharmaceuticals poses a highly ecological threat, which was up to 14 times higher than that reported before of COVID-19 pandemic. These results showed that the COVID-19 had not only impacted human health but also had an effect on environmental health.

7.
Heliyon ; 8(11): e11256, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36353151

RESUMO

Global pork production has an annual growth of approximately 2.1%, and its economic and environmental impact are related with the treatment of waste in the production chain. There is little evidence of research advances to generate alternatives for using these wastes. The lack of research related to microalgae cultivation using digestate produced by porcine residues generates negative environmental impact, inadequate and inefficient technologies, low recovery and use of waste and loss of value and competitiveness in the market. The available literature focuses mainly on the treatment of anaerobic digestion liquid effluents for the removal of components, but not on the generation of value-added products. Therefore, there is a need to collect the available information, analyze it and propose other new methodologies. This article presents the information obtained from conducting a systematic review of the literature with a bibliometric and a comparative analysis; achieving an analysis of the temporal and geographical distribution, the main topics, the most influential players, the degree of maturity of the research and different strategies collected for microalgae-based swine manure digestate treatment. In this way, it was possible to capture an overview of the current state of the development of research focused on the use of digestate for the cultivation of microalgae, visualizing important aspects as the evolution of publications, identifying China and USA as the main players in research, biomass and wastewater as potential topics also Spirulina, Astaxanthin and beta-carotene as the main products based on microalgae. Thus, achieving an structure, organized and synthesized landscape of scientific and technological knowledge available for the proposal of investigations that allow the use of anaerobic digestion liquid effluents as cultivation medium for microalgae.

8.
Heliyon ; 8(3): e09028, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342833

RESUMO

Pollution by polymeric materials - in particular plastics - has a negative effect on the health of our planet. Approximately 4.9 billion tons of plastic are estimated to have been improperly disposed of, with the environment as their final destination. This scenario comes from a linear economic system, extraction-production-consumption and finally disposal. The alarming panorama has created the need to find technological solutions that generate new uses for discarded polymeric materials or turn them into part of the production process to produce new and novel materials, such as carbon nanotubes, graphene, or other carbonaceous materials of high added value, modifying the economy for a circular and sustainable production model. This review highlights the negative impact that the disposal of plastic materials has on the environment and the research needs that allow solving the pollution problems generated in the environment by these wastes. Also, the review highlights the current and future directions of recovery plastic waste research-based to promote innovations in the plastic production sector that could allow obtaining breakpoints in other industrial sectors with the technology-based companies.

9.
Environ Sci Pollut Res Int ; 29(28): 42120-42129, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33983609

RESUMO

This work aims to integrate several hydrogen peroxide (H2O2) activation mechanisms, photolysis (UVC irradiation), chemical electron transfer (TiO2-P25 photocatalysis), and reaction with TiO2-P25 in dark conditions, for reactive oxygen species (ROS) generation towards the removal of contaminants of emerging concern (CECs), in a single unit operated in continuous-flow mode. An H2O2 stock solution is fed by the lumen side of a tubular ceramic membrane, delivering the oxidant to the (i) catalyst immobilized in the membrane shell-side and (ii) annular reaction zone (ARZ, space between membrane shell-side and outer quartz tube) where CECs contaminated water flows with a helix trajectory, being activated by UV light provided by four lamps placed symmetrically around the reactor. First, the effect of several parameters in the removal of a CEC target molecule, amoxicillin (AMX), was evaluated using a synthetic solution ([AMX]inlet = 2.0 mg L-1): (i) light source (UVA or UVC radiation), (ii) H2O2 dose, (iii) H2O2 injection method (radial permeation vs. upstream injection), and (iv) number of TiO2-P25 layers deposited on the membrane. The UVC/H2O2/TiO2 system with radial addition of H2O2 (20 mg L-1) and 9-TiO2-P25 layers provided the highest AMX removal efficiency (72.2 ± 0.5%) with a UV fluence of 45 mJ cm-2 (residence time of 4.6 s), due to the synergic effect of four mechanisms: (i) AMX photolysis, (ii) H2O2 photocleavage, (iii) TiO2-P25 photoactivation, and (iv) chemical reactions between H2O2 and TiO2-P25. The urban wastewater matrix showed a negative effect on AMX removal (~44%) due to the presence of ROS scavengers and light-filtering species.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Amoxicilina , Cerâmica , Peróxido de Hidrogênio/química , Oxirredução , Espécies Reativas de Oxigênio , Titânio/química , Raios Ultravioleta , Águas Residuárias/química , Poluentes Químicos da Água/análise
10.
Heliyon ; 7(9): e07949, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34541354

RESUMO

This research deepens the analysis of the mineral water footprint, especially that of gold, in regions that are understudied and where mining has been an intensified extractive activity since the colonial era, as is the case in the northern part of department of Cauca in Colombia. Thus, the purpose was to estimate the water footprint indicators in gold mining in Suárez (Cauca, Colombia), to quantify the impacts generated by the non-returned water in the production process and the levels of pollutants in the wastewater, aimed to strength public policies, control strategies and mitigation that generates reductions in the impacts from mining activities on the environment. The blue water footprint was estimated in 79.91 m3 per kg of gold extracted and the gray water footprint was found to be in the range of 272,125.39 to 404,825.11 m3 per kg of gold extracted. The water footprint values obtained were compared with other mines with similar operations. These results generate a baseline for decision making, providing elements for environmental strategic planning, regulations and showing the great environmental pressure that gold activity exerts on water resources and the territories.

11.
Water Res ; 202: 117421, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390948

RESUMO

The debate on whether photocatalysis can reach full maturity at commercial level as an effective and economical process for treatment and purification of water and wastewater has recently intensified. Despite a bloom of scientific investigations in the last 30 years, particularly with regards to innovative photocatalytic materials, photocatalysis has so far seen a few industrial applications. Regardless of the points of view, it has been realized that research on reactor design and modeling are now equally urgent to match the extensive research carried out on innovative photocatalytic materials. In reality, the development of photocatalytic reactors has advanced steadily in terms of modeling and reactor design over the last two decades, though this topic has captured a smaller specialized audience. In this critical review, we introduce the latest developments on photocatalytic reactors for water treatment from an engineering perspective. The focus is on the modeling and design of photocatalytic reactors for water treatment at pilot- or at greater scale. Photocatalytic reactors utilizing both natural sunlight and UV irradiation sources are comprehensively discussed. The most promising photoreactor designs and models are examined giving key design guidelines. Other engineering considerations, such as operation, cost analysis, patents, and several industrial applications of photocatalytic reactors for water treatment are also presented. The dissemination of key photocatalytic reactor design principles among the scientific community and the water industry is currently one of the greatest obstacles in translating PWT research into widespread real-world application.


Assuntos
Purificação da Água , Catálise , Luz Solar , Raios Ultravioleta , Águas Residuárias
12.
Molecules ; 26(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072101

RESUMO

The tannery industry is one of the economic sectors that contributes to the development of different countries. Globally, Europe and Asia are the main producers of this industry, although Latin America and Africa have been growing considerably in recent years. With this growth, the negative environmental impacts towards different ecosystem resources as a result of the discharges of recalcitrated pollutants, have led to different investigations to generate alternative solutions. Worldwide, different technologies have been studied to address this problem, biological and physicochemical processes have been widely studied, presenting drawbacks with some recalcitrant compounds. This review provides a context on the different existing technologies for the treatment of tannery wastewater, analyzing the physicochemical composition of this liquid waste, the impact it generates on human health and ecosystems and the advances in the different existing technologies, focusing on advanced oxidation processes and the use of microalgae. The coupling of advanced oxidation processes with biological processes, mainly microalgae, is seen as a viable biotechnological strategy, not only for the removal of pollutants, but also to obtain value-added products with potential use in the biorefining of the biomass.


Assuntos
Resíduos Industriais/análise , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Biocombustíveis , Análise da Demanda Biológica de Oxigênio , Biomassa , Biotecnologia , Cianobactérias , Ecossistema , Eletroquímica , Geografia , Metais Pesados , Oxirredução , Oxigênio/química , Curtume , Purificação da Água/métodos
13.
Heliyon ; 7(5): e06969, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027174

RESUMO

A methodology for the analysis of the behavior of complex reactors based on the construction of profiles of a dimensionless number (Damköhler) for each main chemical species ( D a i ) was proposed. A 4-chlorophenol mineralization reaction in a heterogeneous solar reactor with suspended TiO2 and addition of H2O2 with tubular geometry and radiation collectors, fluid flow and a recirculation system was selected as a complex model system in order to validate the approach. The dynamic behavior of the reactor in dimensionless variables was modeled as a function of D a i . Where D a i ( z , t ) is a local property and grouped the optical and surface's properties of the catalyst, catalyst load, radiation intensity, the photon absorption rate, rate of non-photochemical reactions, the H2O2 effect, the reaction rate of different stages like adsorption, attack of radicals, surface reactions, plus design and operation variables like reactor volume and volumetric flow. A coupling of orthogonal collocation and Runge-Kutta methods were used to solve the PDEs and carry out the simulations to the different experimental conditions, resulting in profiles of D a i , C i , and conversion in function of time and space. The D a i profiles proposed in the new methodology are capable of describing the disturbances in solar reactors, to indicate consumption and generation rates, instantaneous changes of reaction rate, to describe competitive reactions and quenching effects and to determine equilibrium concentrations, all of the above at each time and space. Therefore, this approach is a analysis tool of reactors which complements the concentration profile. This methodology can be extended to other reactive systems, adapting the intrinsic reaction rates.

14.
Environ Sci Pollut Res Int ; 28(19): 24079-24091, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33439445

RESUMO

This work proposes a novel approach for the coupling of ozonation and Fenton processes using a new prototype of a high rotation bubble reactor (HRBR), which improves utilization of the ozone and hydrogen peroxide through bubble generation and axial and radial dispersion of the flow. The HRBR integrates the rotor and the diffuser in the same device facilitating the generation and dispersion of the ozone bubbles inside the reaction tank. Thus, the mass transfer to the liquid phase is enhanced. Most of the experiments were carried out under neutral pH and 1580 rpm of agitation during the 20 min of reaction. Total ibuprofen degradation was achieved within 20 min of operation for most of the couplings and individual processes evaluated. It was successfully demonstrated that the HRBR can be used as a reactive system for heterogeneous Fenton and ozonation coupling because it presents a high synergy. For the ozonation process, the reactor also displayed a good performance because the residual ozone in the gas is lower than 0.4 mg/L, which indicates that there is a suitable ozone utilization. Ibuprofen degradation by other processes like oxidation direct by H2O2 and heterogeneous Fenton was 28.0% and 73.1%, respectively. It was determined that the reaction rate, synergy, OUI (ozone utilized index), and consumption of electrical energy (EE/O) of the coupled processes could be improved by using the HRBR depending on the experimental conditions.


Assuntos
Poluentes Ambientais , Ozônio , Poluentes Químicos da Água , Peróxido de Hidrogênio , Compostos de Ferro , Minerais , Oxirredução , Rotação
15.
Chemosphere ; 263: 128049, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297062

RESUMO

This work presents a disruptive approach to promote highly-efficient photo-Fenton process at neutral pH under continuous mode operation. The system consists of a tube-in-tube membrane reactor designed for continuous-flow titration of low iron doses to the annular reaction zone (ARZ). A concentrated acidic ferrous ion (Fe2+) solution is fed by the lumen-side of the membrane, permeating through the membrane pores (inside-out mode), being dosed and uniformly delivered to the membrane shell-side. Polluted water, containing amoxicillin (AMX) and oxidant (H2O2), flows continuously in the reactor annulus (space between the membrane shell-side and an outer quartz tube). The catalyst radial dispersion is enhanced by the helicoidal movement of water around the membrane shell-side, efficiently promoting its contact with H2O2 and UV light. The efficiency of photochemical and photocatalytic oxidation was evaluated as a function of catalyst dose, catalyst injection mode (radial permeation vs injection upstream from the reactor inlet), light source (UVA vs UVC) and aqueous solution matrix (synthetic vs real wastewater). At steady-state, photo-Fenton reaction with Fe2+ radial addition, driven by UVC light, showed the highest AMX removal for synthetic (∼65%, removal rate of 44 µMAMX/min, using [Fe2+]ARZ = 2 mg/L and [H2O2]inlet = 10 mg/L) and real municipal wastewaters (∼45%, removal rate of 31 µMAMX/min, with [Fe2+]ARZ = 5 mg/L and [H2O2]inlet = 40 mg/L), with a residence time of only 4.6 s.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro , Oxirredução , Poluentes Químicos da Água/análise
16.
Heliyon ; 6(11): e05386, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33195840

RESUMO

The reaction kinetic rate and mass transport play an important role in the sizing and scale-up of reactors. The Damköhler's dimensionless number ( D a ) is the quotient of these effects. A new interpretation of D a as a local property is introduced D a ( x , y , z , t ) . A new graphical methodology is proposed for the sizing and scale-up of unidirectional flow reactors and CSTRs. The partial differential equation (PDE) and algebraic that describe the continuity within these reactors transform into dimensionless variables, and the conversion at the output is expressed as a function of the conditions at the input D a 0 . The operating conditions as volumetric flow, residence time; design variables as reactor volume; and intrinsic reaction rate are involved in D a 0 . The equations are solved numerically to develop the design charts D a 0 vs X. The design volume is linear with D a 0 , and the conversion is obtained from the charts ( D a 0 vs X) or vice versa. Using these charts avoids the analytical or numerical solution of the PDE that governs the unidirectional flow reactors becoming an easy tool for scale-up. The article portrays how to use these diagrams. Reactors with D a 0 < 0.1 have a low conversion per pass, the charts also allow estimating the number of recirculations required as a function of the overall conversion. Reactors with the same conversion have the same D a 0 , both laboratory and industrial scale. Then, the D a number is presented as a fundamental parameter for design and scaling-up these reactors.

17.
Water Sci Technol ; 82(6): 1031-1043, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33055394

RESUMO

This study evaluated the capacity of a pilot-scale high-rate algal pond (HRAP) to remove pharmaceutical compounds (PCs) from domestic wastewater in the city of Santiago de Cali, Colombia. The compounds analyzed included antiepileptics, hypolipidemic drugs, tranquilizers and analgesics, and anti-inflammatory drugs. The HRAP operated under a continuous water flow of 0.2 m3d-1 and a 3-day hydraulic retention time (HRT). Removal efficiencies were high (>70%) for fenofibric acid, ibuprofen, and paracetamol; medium (30-70%) for gabapentin, lamotrigine, fenofibrate, gemfibrozil, diclofenac, ketoprofen, naproxen, and pentoxifylline; and low (<30%) for carbamazepine and its metabolite 10,11-Dihidro-10,11-dihidroxicarbamazepine (CBZ-Diol). The findings herein are similar to other studies, but were obtained with a shorter HRT. These results show that tropical environmental conditions favor photodegradation and contribute to the development of microalgae and the biodegradation process. Twenty microalgae species were identified, with the phylum Chlorophyta as the most abundant, particularly due to its natural introduction. The removal of the PCs also reflected a percentage reduction (>50%) in the ecological hazard posed by most of the compounds, although it is important to note that the hazard from gemfibrozil and ibuprofen remained high even after treatment, indicating the need for complementary treatment.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Colômbia , Lagoas , Clima Tropical , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise
18.
Data Brief ; 30: 105551, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32337328

RESUMO

This work shows a patent database for Coronaviruses that provides an overview of the patenting activity and trends in focused antiviral therapy with the use of triazole based compounds, glycoprotein, and protease inhibitors as possible treatment. The patent data was obtained from Orbit Intelligence Software using a patent family structure to get a big database that could be used for built patent landscape report (PLR), market analysis, technical and competitive intelligence, and monitoring and survey of a new ideas for the treatment of coronavirus diseases. The raw data is reported in four databases, which were classified according to different items: legal status (alive, dead), 1st application year (after 2015, 2011-2015, 2006-2010, 2001-2005), and Top 5 International Patents Classifications (IPC). The main players, the investment trend, markets, geographical distribution, technology overview, technologies distribution, and patent citation are showed by this analysed data report.

19.
Data Brief ; 29: 105346, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32181307

RESUMO

In recent years, the extraction of gold has become important for the development of nations. However, mining wastewater represents an environmental problem due to its high content of free cyanide-based compounds and weak and strong cyanocomplexes for the use of sodium cyanide to obtain gold from minerals. The experimental data presented show the performance of the elimination of one of the strongest cyanocomplex that can appear in mining wastewater ( [ Co ( CN ) 6 ] 3 - ) by the ultraviolet C activation of persulfate (PS). The removal of total cobalt in solution was used as an indicator of the elimination of the cobalt cyanocomplexes that appear as transformation products from the degradation of [ Co ( CN ) 6 ] 3 - . The data evidence that strong cyanocomplexes can be eliminated from mining wastewater. The experimental runs were divided into two parts: as a first step, the influence of the UVC light was elucidated. Afterward, five initial concentrations of persulfate ion (0.1, 0.3, 0.5, 0.7 and 0.9 g/L of PS), two pH values (11 and 13) and two additional initial concentrations of contaminant (25 mg/L and 75 mg/L of [ Co ( CN ) 6 ] 3 - ) were examined to find the optimal parameter where the highest Co removal is obtained.

20.
J Hazard Mater ; 392: 122389, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172070

RESUMO

The ultraviolet light activation of persulfate (PS) was evaluated for the degradation of cobalt cyanocomplexes, which are considered as some of the most recalcitrant compounds present in mining wastewater. The influence of the solution pH (11 and 13), initial concentration of PS (0.1, 0.3, 0.5, 0.7 and 0.9 g/L), dissolved oxygen and initial concentration of contaminant were evaluated. Photolysis results showed that [Formula: see text] is photosensitive to UVC radiation, while the activation of PS by alkaline pH does not contribute to the degradation of the cyanocomplex. There was no presence of CN- at both solution pH values using UVC/PS. But at pH 13, the degradation of cobalt cyanocomplexes and the pseudo-first-order rate constant increased. This was attributed to the effective conversion of SO4•- to HO• and to the increase in the oxidative photolysis of PS at high pH. Additional tests demonstrated better performance of UVC/PS in the absence of oxygen which may be caused by the quenching effect of O2 to the higher energy excited state of the cyanocomplex that must be reached to initiate degradation reactions. Increasing the initial concentration of [Formula: see text] will increase the amount of Co removed but it represents the higher specific energy consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...