Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 4(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31593554

RESUMO

Anemia of ß-thalassemia is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of ß-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage, as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes, and in heme-regulated inhibitor activation and eIF2α phosphorylation. The improvement of ß-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation and Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of ß-thalassemia.


Assuntos
Eritrócitos/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Piperazinas/farmacologia , Sulfonas/farmacologia , Talassemia beta/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Eritrócitos/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
2.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033440

RESUMO

Iron and heme play central roles in the production of red blood cells, but the underlying mechanisms remain incompletely understood. Heme-regulated eIF2α kinase (HRI) controls translation by phosphorylating eIF2α. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integratedstressresponse mRNAs during iron deficiency in vivo. Moreover, we find that the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins is substantially repressed by HRI during iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI during iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and to enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis.


Assuntos
Eritropoese/fisiologia , Heme/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteostase/fisiologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Anemia Ferropriva , Animais , Diferenciação Celular , Eritroblastos , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Camundongos , Camundongos Knockout , Oxigênio/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Ribossômicas , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
3.
Blood ; 133(12): 1358-1370, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30700418

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro erythroid cell growth phenotypes for primary CD34+ cells from DBA patients and following short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD34+ cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ribosomal protein (RP) mutant genes. We further documented that proteasomal degradation of HSP70, the chaperone of GATA1, is a major contributor to the defect in erythroid proliferation, delayed erythroid differentiation, increased apoptosis, and decreased globin expression, which are all features of the RPL5 or RPL11 DBA phenotype. In the present study, we explored the hypothesis that an imbalance between globin and heme synthesis may be involved in pure red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free heme and increased reactive oxygen species production that was more pronounced in cells of the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased apoptosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major role of HSP70 in the control of balanced heme/globin synthesis.


Assuntos
Anemia de Diamond-Blackfan/patologia , Diferenciação Celular , Células Eritroides/patologia , Fator de Transcrição GATA1/metabolismo , Globinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Heme/metabolismo , Anemia de Diamond-Blackfan/metabolismo , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Feminino , Seguimentos , Haploinsuficiência , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo , Prognóstico , RNA Interferente Pequeno , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
4.
Blood ; 131(4): 450-461, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29101239

RESUMO

Iron deficiency (ID) anemia is a prevalent disease, yet molecular mechanisms by which iron and heme regulate erythropoiesis are not completely understood. Heme-regulated eIF2α kinase (HRI) is a key hemoprotein in erythroid precursors that sense intracellular heme concentrations to balance globin synthesis with the amount of heme available for hemoglobin production. HRI is activated by heme deficiency and oxidative stress, and it phosphorylates eIF2α (eIF2αP), which inhibits the translation of globin messenger RNAs (mRNAs) and selectively enhances the translation of activating transcription factor 4 (ATF4) mRNA to induce stress response genes. Here, we generated a novel mouse model (eAA) with the erythroid-specific ablation of eIF2αP and demonstrated that eIF2αP is required for induction of ATF4 protein synthesis in vivo in erythroid cells during ID. We show for the first time that both eIF2αP and ATF4 are necessary to promote erythroid differentiation and to reduce oxidative stress in vivo during ID. Furthermore, the HRI-eIF2αP-ATF4 pathway suppresses mTORC1 signaling specifically in the erythroid lineage. Pharmacologic inhibition of mTORC1 significantly increased red blood cell counts and hemoglobin content in the blood, improved erythroid differentiation, and reduced splenomegaly of iron-deficient Hri-/- and eAA mice. However, globin inclusions and elevated oxidative stress remained, demonstrating the essential nonredundant role of HRI-eIF2αP in these processes. Dietary iron repletion completely reversed ID anemia and ineffective erythropoiesis of Hri-/- , eAA, and Atf4-/- mice by inhibiting both HRI and mTORC1 signaling. Thus, HRI coordinates 2 key translation-regulation pathways, eIF2αP and mTORC1, to circumvent ineffective erythropoiesis, highlighting heme and translation in the regulation of erythropoiesis.


Assuntos
Anemia Ferropriva/fisiopatologia , Eritropoese , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Anemia Ferropriva/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
5.
J Biol Chem ; 291(17): 9073-86, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26841869

RESUMO

B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.


Assuntos
Autoanticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Fator de Transcrição Ikaros/imunologia , Imunoglobulina M/imunologia , Células Precursoras de Linfócitos B/imunologia , Animais , Fator de Transcrição Ikaros/genética , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
6.
Biochem Biophys Res Commun ; 470(3): 714-720, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26775846

RESUMO

The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.


Assuntos
Fator de Transcrição Ikaros/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia , Baço/citologia , Animais , Linfócitos B , Proliferação de Células/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
7.
Blood ; 116(25): 5443-54, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20829372

RESUMO

The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell-specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase-cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3' part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3' promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5' Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter.


Assuntos
Fator de Transcrição Ikaros/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas/genética , Receptor Notch1/genética , Ativação Transcricional/fisiologia , Animais , Northern Blotting , Western Blotting , Transformação Celular Neoplásica , Primers do DNA/química , Primers do DNA/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Camundongos , Camundongos Knockout , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , Receptor Notch3 , Receptores Notch/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...