Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674035

RESUMO

In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.


Assuntos
Metaloides , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Metaloides/metabolismo , Metaloides/toxicidade , Humanos , Estresse Fisiológico/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Arsênio/toxicidade , Arsênio/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 51(17): 9101-9121, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37486771

RESUMO

Cohesin is a highly conserved, multiprotein complex whose canonical function is to hold sister chromatids together to ensure accurate chromosome segregation. Cohesin association with chromatin relies on the Scc2-Scc4 cohesin loading complex that enables cohesin ring opening and topological entrapment of sister DNAs. To better understand how sister chromatid cohesion is regulated, we performed a proteomic screen in budding yeast that identified the Isw1 chromatin remodeler as a cohesin binding partner. In addition, we found that Isw1 also interacts with Scc2-Scc4. Lack of Isw1 protein, the Ioc3 subunit of ISW1a or Isw1 chromatin remodeling activity resulted in increased accumulation of cohesin at centromeres and pericentromeres, suggesting that ISW1a may promote efficient translocation of cohesin from the centromeric site of loading to neighboring regions. Consistent with the role of ISW1a in the chromatin organization of centromeric regions, Isw1 was found to be recruited to centromeres. In its absence we observed changes in the nucleosomal landscape at centromeres and pericentromeres. Finally, we discovered that upon loss of RSC functionality, ISW1a activity leads to reduced cohesin binding and cohesion defect. Taken together, our results support the notion of a key role of chromatin remodelers in the regulation of cohesin distribution on chromosomes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cromátides/genética , Cromatina/genética , Cromatina/metabolismo , Proteômica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
3.
J Hazard Mater ; 456: 131653, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37224717

RESUMO

The Acr3 protein family plays a crucial role in metalloid detoxification and includes members from bacteria to higher plants. Most of the Acr3 transporters studied so far are specific for arsenite, whereas Acr3 from budding yeast also shows some capacity to transport antimonite. However, the molecular basis of Acr3 substrate specificity remains poorly understood. By analyzing randomly generated and rationally designed yeast Acr3 variants, critical residues determining substrate specificity were identified for the first time. Replacement of Val173 with Ala abolished antimonite transport without affecting arsenite extrusion. In contrast, substitution of Glu353 with Asp resulted in a loss of arsenite transport activity and a concomitant increase in antimonite translocation capacity. Importantly, Val173 is located close to the hypothetical substrate binding site, whereas Glu353 has been proposed to participate in substrate binding. Identification of key residues conferring substrate selectivity provides a valuable starting point for further studies of the Acr3 family and may have implications for the development of biotechnological applications in metalloid remediation. Moreover, our data contribute to understanding why members of the Acr3 family evolved as arsenite-specific transporters in an environment of ubiquitously present arsenic and trace amounts of antimony.


Assuntos
Arsênio , Arsenitos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Arsenitos/metabolismo , Proteínas de Membrana Transportadoras/genética , Antimônio/metabolismo , Arsênio/metabolismo
4.
Cells ; 12(3)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36766761

RESUMO

Up-frameshift protein 1 (UPF1) plays the role of a vital controller for transcripts, ready to react in the event of an incorrect translation mechanism. It is well known as one of the key elements involved in mRNA decay pathways and participates in transcript and protein quality control in several different aspects. Firstly, UPF1 specifically degrades premature termination codon (PTC)-containing products in a nonsense-mediated mRNA decay (NMD)-coupled manner. Additionally, UPF1 can potentially act as an E3 ligase and degrade target proteins independently from mRNA decay pathways. Thus, UPF1 protects cells against the accumulation of misfolded polypeptides. However, this multitasking protein may still hide many of its functions and abilities. In this article, we summarize important discoveries in the context of UPF1, its involvement in various cellular pathways, as well as its structural importance and mutational changes related to the emergence of various pathologies and disease states. Even though the state of knowledge about this protein has significantly increased over the years, there are still many intriguing aspects that remain unresolved.


Assuntos
RNA Helicases , Transativadores , Humanos , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/genética , Transativadores/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Mutação , Códon sem Sentido/genética
5.
FEMS Yeast Res ; 22(1)2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35323907

RESUMO

In a high-throughput yeast two-hybrid screen of predicted coiled-coil motif interactions in the Saccharomyces cerevisiae proteome, the protein Etp1 was found to interact with the yeast AP-1-like transcription factors Yap8, Yap1 and Yap6. Yap8 plays a crucial role during arsenic stress since it regulates expression of the resistance genes ACR2 and ACR3. The function of Etp1 is not well understood but the protein has been implicated in transcription and protein turnover during ethanol stress, and the etp1∆ mutant is sensitive to ethanol. In this current study, we investigated whether Etp1 is implicated in Yap8-dependent functions. We show that Etp1 is required for optimal growth in the presence of trivalent arsenite and for optimal expression of the arsenite export protein encoded by ACR3. Since Yap8 is the only known transcription factor that regulates ACR3 expression, we investigated whether Etp1 regulates Yap8. Yap8 ubiquitination, stability, nuclear localization and ACR3 promoter association were unaffected in etp1∆ cells, indicating that Etp1 affects ACR3 expression independently of Yap8. Thus, Etp1 impacts gene expression under arsenic and other stress conditions but the mechanistic details remain to be elucidated.


Assuntos
Arsênio , Arsenitos , Proteínas de Saccharomyces cerevisiae , Arsênio/metabolismo , Arsenitos/metabolismo , Arsenitos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925940

RESUMO

Antimony is a toxic metalloid with poorly understood mechanisms of toxicity and uncertain carcinogenic properties. By using a combination of genetic, biochemical and DNA damage assays, we investigated the genotoxic potential of trivalent antimony in the model organism Saccharomyces cerevisiae. We found that low doses of Sb(III) generate various forms of DNA damage including replication and topoisomerase I-dependent DNA lesions as well as oxidative stress and replication-independent DNA breaks accompanied by activation of DNA damage checkpoints and formation of recombination repair centers. At higher concentrations of Sb(III), moderately increased oxidative DNA damage is also observed. Consistently, base excision, DNA damage tolerance and homologous recombination repair pathways contribute to Sb(III) tolerance. In addition, we provided evidence suggesting that Sb(III) causes telomere dysfunction. Finally, we showed that Sb(III) negatively effects repair of double-strand DNA breaks and distorts actin and microtubule cytoskeleton. In sum, our results indicate that Sb(III) exhibits a significant genotoxic activity in budding yeast.


Assuntos
Antimônio/toxicidade , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Estresse Oxidativo/genética , Recombinação Genética/efeitos dos fármacos , Recombinação Genética/genética , Reparo de DNA por Recombinação/efeitos dos fármacos , Reparo de DNA por Recombinação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Telômero/metabolismo
8.
Nucleic Acids Res ; 48(10): 5426-5441, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32356892

RESUMO

Activator protein 1 (AP-1) is one of the largest families of basic leucine zipper (bZIP) transcription factors in eukaryotic cells. How AP-1 proteins achieve target DNA binding specificity remains elusive. In Saccharomyces cerevisiae, the AP-1-like protein (Yap) family comprises eight members (Yap1 to Yap8) that display distinct genomic target sites despite high sequence homology of their DNA binding bZIP domains. In contrast to the other members of the Yap family, which preferentially bind to short (7-8 bp) DNA motifs, Yap8 binds to an unusually long DNA motif (13 bp). It has been unclear what determines this unique specificity of Yap8. In this work, we use molecular and biochemical analyses combined with computer-based structural design and molecular dynamics simulations of Yap8-DNA interactions to better understand the structural basis of DNA binding specificity determinants. We identify specific residues in the N-terminal tail preceding the basic region, which define stable association of Yap8 with its target promoter. We propose that the N-terminal tail directly interacts with DNA and stabilizes Yap8 binding to the 13 bp motif. Thus, beside the core basic region, the adjacent N-terminal region contributes to alternative DNA binding selectivity within the AP-1 family.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA Fúngico/química , Proteínas de Membrana Transportadoras/genética , Simulação de Dinâmica Molecular , Mutação , Regiões Promotoras Genéticas , Ligação Proteica , Elementos de Resposta , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Biochim Biophys Acta Biomembr ; 1861(5): 916-925, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776335

RESUMO

The yeast plasma membrane transporter Acr3 mediates efflux of toxic arsenite and antimonite. Here, we investigated the mechanisms of Acr3 turnover. We found that after arrival and residence at the plasma membrane, Acr3 is subjected to internalization followed by proteolysis in the vacuole. Endocytic degradation of Acr3 is promoted by the ubiquitin ligase Rsp5 and requires polyubiquitination of Acr3 at multiple lysine residues via lysine 63-linked ubiquitin chains. The turnover of Acr3 also depends on two arrestin-related proteins, Art3/Aly2 and Art4/Rod1, that enable recruitment of Rsp5 to its targets. Finally, we found that a short acidic patch located in the N-terminal tail of Acr3 is needed for its ubiquitination and internalization. We propose that this motif serves as an endocytic signal that facilitates binding of the arrestin-Rsp5 complexes to the Acr3 cargo.


Assuntos
Arrestina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Endocitose , Transdução de Sinais , Ubiquitinação
12.
J Exp Bot ; 70(1): 285-300, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304441

RESUMO

Members of the cation diffusion facilitator (CDF) family have been identified in all kingdoms of life. They have been divided into three subgroups, namely Zn-CDF, Fe/Zn-CDF, and Mn-CDF, based on their putative specificity to transported metal ions. The plant metal tolerance protein 6 (MTP6) proteins fall into the Fe/Zn-CDF subgroup; however, their function in iron/zinc transport has not yet been confirmed. Here, we characterized the MTP6 protein from cucumber, Cucumis sativus. When expressed in yeast and in protoplasts isolated from Arabidopsis cells, CsMTP6 localized in mitochondria and contributed to the efflux of Fe and Mn from these organelles. Immunolocalization of CsMTP6 in cucumber membranes confirmed this association with mitochondria. Root expression and protein levels of CsMTP6 were significantly up-regulated in conditions of Fe deficiency and excess, but were not affected by Mn availability. These results indicate that MTP6 proteins contribute to the distribution of Fe and Mn between the cytosol and mitochondria of plant cells, and are regulated by Fe to maintain mitochondrial and cytosolic iron homeostasis under varying conditions of Fe availability.


Assuntos
Proteínas de Transporte de Cátions/genética , Cucumis sativus/fisiologia , Ferro/fisiologia , Manganês/fisiologia , Proteínas de Plantas/genética , Sequência de Aminoácidos , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cucumis sativus/genética , Homeostase , Mitocôndrias/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
13.
Plant Sci ; 277: 196-206, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466585

RESUMO

Heterodimeric complexes formed by members of the cation facilitator (CDF) family catalyse the import of Zn into the secretory pathway of yeast and vertebrate cells. Orthologous proteins AtMTP5 and AtMTP12 from Arabidopsis have also been shown to form a heterodimeric complex at the Golgi compartment of plant cells that possibly transport Zn. In this study we show that cucumber proteins CsMTP5 and CsMTP12 form a functional heterodimer that is involved in the loading of Zn into the ER lumen under low Zn, and not in the detoxification of yeast from Zn excess through vesicle-mediated exocytosis. Using specific antibodies, we demonstrate that CsMTP5 is localized at the Golgi compartment of cucumber cells and is markedly up-regulated upon Zn deficiency. The level of CsMTP5 transcript in cucumber is also significantly elevated in Zn-limiting conditions, whereas the expression of CsMTP12 is independent of the availability of Zn. Therefore we propose that the cucumber heterodimeric complex CsMTP5-CsMTP12 functions to deliver Zn to Zn-dependent proteins of the Golgi compartment and is regulated by zinc at the level of CsMTP5 transcription.


Assuntos
Cucumis sativus/metabolismo , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Complexo de Golgi/metabolismo , Peso Molecular
14.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30111537

RESUMO

DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error-free recombination-like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single-stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4-dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error-free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5-mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Replicação do DNA , DNA Fúngico/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Sistema Livre de Células/metabolismo , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA Helicases , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
15.
Plant J ; 95(6): 988-1003, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932267

RESUMO

The plant metal tolerance protein family (MTP) includes 12 members that have been classified into three phylogenetically different subgroups - Zn-cation diffusion facilitator (CDF), Fe/Zn-CDF and Mn-CDF - based on their putative metal specificity. To date, only members belonging to the Zn-CDF or Mn-CDF group have been characterized functionally. The plant Fe/Zn-CDF subgroup includes two proteins, MTP6 and MTP7, but their function and metal specificity have not been confirmed. In this study we showed that cucumber CsMTP7 is a highly specific mitochondrial Fe importer that is able to confer yeast tolerance to Fe excess through increased accumulation of Fe in the mitochondria. We also demonstrated that CsMTP7 contributes to the increased accumulation of Fe in the mitochondria of Arabidopsis thaliana protoplasts. The transcripts and mitochondrial levels of CsMTP7 and ferritin - the iron-storing protein - are significantly increased in cucumber roots in response to Fe excess. This finding suggests that CsMTP7 and ferritin work in concert to accumulate Fe in plant mitochondria. As genes that encode orthologous proteins have been identified in phylogenetically distant organisms, including Archaea, cyanobacteria, humans and plants, but not in yeast, we concluded that the MTP7-mediated mitochondrial Fe accumulation may be conserved in the species, and express mitochondrial ferritin for mitochondrial Fe storage.


Assuntos
Cucumis sativus/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
16.
Nucleic Acids Res ; 45(11): 6404-6416, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28383696

RESUMO

Accurate chromosome segregation is essential for every living cell as unequal distribution of chromosomes during cell division may result in genome instability that manifests in carcinogenesis and developmental disorders. Irc5 from Saccharomyces cerevisiae is a member of the conserved Snf2 family of ATP-dependent DNA translocases and its function is poorly understood. Here, we identify Irc5 as a novel interactor of the cohesin complex. Irc5 associates with Scc1 cohesin subunit and contributes to cohesin binding to chromatin. Disruption of IRC5 decreases cohesin levels at centromeres and chromosome arms, causing premature sister chromatid separation. Moreover, reduced cohesin occupancy at the rDNA region in cells lacking IRC5 leads to the loss of rDNA repeats. We also show that the translocase activity of Irc5 is required for its function in cohesion pathway. Finally, we demonstrate that in the absence of Irc5 both the level of chromatin-bound Scc2, a member of cohesin loading complex, and physical interaction between Scc1 and Scc2 are reduced. Our results suggest that Irc5 is an auxiliary factor that is involved in cohesin association with chromatin.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Cromossomos Fúngicos/metabolismo , DNA Ribossômico/genética , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Troca de Cromátide Irmã , Coesinas
17.
Biochim Biophys Acta Biomembr ; 1859(1): 117-125, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27836640

RESUMO

Acr3 is a plasma membrane transporter, a member of the bile/arsenite/riboflavin transporter (BART) superfamily, which confers high-level resistance to arsenicals in the yeast Saccharomyces cerevisiae. We have previously shown that the yeast Acr3 acts as a low affinity As(III)/H+ and Sb(III)/H+ antiporter. We have also identified several amino acid residues that are localized in putative transmembrane helices (TM) and appeared to be critical for the Acr3 activity. In the present study, the topology of Acr3 was investigated by insertion of glycosylation and factor Xa protease cleavage sites at predicted hydrophilic regions. The analysis of the glycosylation pattern and factor Xa cleavage products of resulting Acr3 fusion constructs provide evidence supporting a topological model of Acr3 with 10 TM segments and cytoplasmically oriented N- and C-terminal domains. Next, we investigated the role of the hydrophilic loop connecting TM8 and TM9, the large size of which is unique to members of the yeast Acr3 family of metalloid transporters. We found that a 28 amino acid deletion in this region does not affect Acr3 folding, trafficking substrate binding, or transport activity. Finally, we constructed a homology-based structural model of Acr3 using the crystal structure of the Yersinia frederiksenii homologue of the human bile acid sodium symporter ASBT.


Assuntos
Arsenitos/química , Membrana Celular/química , Proteínas de Membrana Transportadoras/química , Proteínas Recombinantes de Fusão/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Arsenitos/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Expressão Gênica , Glicosilação , Cinética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutagênese , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
18.
Mol Syst Biol ; 12(12): 892, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979908

RESUMO

A major rationale for the advocacy of epigenetically mediated adaptive responses is that they facilitate faster adaptation to environmental challenges. This motivated us to develop a theoretical-experimental framework for disclosing the presence of such adaptation-speeding mechanisms in an experimental evolution setting circumventing the need for pursuing costly mutation-accumulation experiments. To this end, we exposed clonal populations of budding yeast to a whole range of stressors. By growth phenotyping, we found that almost complete adaptation to arsenic emerged after a few mitotic cell divisions without involving any phenotypic plasticity. Causative mutations were identified by deep sequencing of the arsenic-adapted populations and reconstructed for validation. Mutation effects on growth phenotypes, and the associated mutational target sizes were quantified and embedded in data-driven individual-based evolutionary population models. We found that the experimentally observed homogeneity of adaptation speed and heterogeneity of molecular solutions could only be accounted for if the mutation rate had been near estimates of the basal mutation rate. The ultrafast adaptation could be fully explained by extensive positive pleiotropy such that all beneficial mutations dramatically enhanced multiple fitness components in concert. As our approach can be exploited across a range of model organisms exposed to a variety of environmental challenges, it may be used for determining the importance of epigenetic adaptation-speeding mechanisms in general.


Assuntos
Arsênio/farmacologia , Proteínas de Bactérias/genética , Epigênese Genética , Mutação , Saccharomycetales/crescimento & desenvolvimento , Adaptação Fisiológica , Evolução Molecular , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Genéticos , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Seleção Genética , Análise de Sequência de DNA , Biologia de Sistemas/métodos
19.
J Biosci ; 41(4): 601-614, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27966483

RESUMO

We investigated the influence of the quaternary ammonium salt (QAS) called IM (N-(dodecyloxycarboxymethyl)- N,N,N-trimethyl ammonium chloride) on yeast cells of the parental strain and the IM-resistant mutant (EO25 IMR) growth. The phenotype of this mutant was pleiotropic. The IMR mutant exhibited resistance to ethanol, osmotic shock and oxidative stress, as well as increased sensitivity to UV. Moreover, it was noted that mutant EO25 appears to have an increased resistance to clotrimazole, ketoconazole, fluconazole, nystatin and cycloheximide. It also tolerated growth in the presence of crystal violet, DTT and metals (selenium, tin, arsenic). It was shown that the presence of IM decreased ergosterol level in mutant plasma membrane and increased its unsaturation. These results indicate changes in the cell lipid composition. Western blot analysis showed the induction of Pma1 level by IM. RT-PCR revealed an increased PMA1 expression after IM treatment.


Assuntos
Membrana Celular/efeitos dos fármacos , Ergosterol/biossíntese , ATPases Translocadoras de Prótons/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Cloreto de Amônio/farmacologia , Ergosterol/genética , Etanol/toxicidade , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Mutação , Pressão Osmótica , Estresse Oxidativo/genética , ATPases Translocadoras de Prótons/genética , Compostos de Amônio Quaternário/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
20.
FEBS Lett ; 590(20): 3649-3659, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27607883

RESUMO

Arsenite is widely present in nature; therefore, cells have evolved mechanisms to prevent arsenite influx and promote efflux. In yeast (Saccharomyces cerevisiae), the aquaglyceroporin Fps1 mediates arsenite influx and efflux. The mitogen-activated protein kinase (MAPK) Hog1 has previously been shown to restrict arsenite influx through Fps1. In this study, we show that another MAPK, Slt2, is transiently phosphorylated in response to arsenite influx. Our findings indicate that the protein kinase activity of Slt2 is required for its role in arsenite tolerance. While Hog1 prevents arsenite influx via phosphorylation of T231 at the N-terminal domain of Fps1, Slt2 promotes arsenite efflux through phosphorylation of S537 at the C terminus. Our data suggest that Slt2 physically interacts with Fps1 and that this interaction depends on phosphorylation of S537. We hypothesize that Hog1 and Slt2 may affect each other's binding to Fps1, thereby controlling the opening and closing of the channel.


Assuntos
Arsenitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Membrana/química , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...