Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Sci Adv ; 9(44): eadh9853, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910622

RESUMO

Quantitative magnetic resonance imaging (MRI) techniques are powerful tools for the study of human tissue, but, in practice, their utility has been limited by lengthy acquisition times. Here, we introduce the Constrained, Adaptive, Low-dimensional, Intrinsically Precise Reconstruction (CALIPR) framework in the context of myelin water imaging (MWI); a quantitative MRI technique generally regarded as the most rigorous approach for noninvasive, in vivo measurement of myelin content. The CALIPR framework exploits data redundancy to recover high-quality images from a small fraction of an imaging dataset, which allowed MWI to be acquired with a previously unattainable sequence (fully sampled acquisition 2 hours:57 min:20 s) in 7 min:26 s (4.2% of the dataset, acceleration factor 23.9). CALIPR quantitative metrics had excellent precision (myelin water fraction mean coefficient of variation 3.2% for the brain and 3.0% for the spinal cord) and markedly increased sensitivity to demyelinating disease pathology compared to a current, widely used technique. The CALIPR framework facilitates drastically improved MWI and could be similarly transformative for other quantitative MRI applications.


Assuntos
Bainha de Mielina , Água , Humanos , Bainha de Mielina/patologia , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
2.
NMR Biomed ; 36(8): e4936, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36973767

RESUMO

Inversion pulses are commonly employed in MRI for T 1 -weighted contrast and relaxation measurements. In the brain, it is often assumed that adiabatic pulses saturate the nonaqueous magnetization. We investigated this assumption using solid-state NMR to monitor the nonaqueous signal directly following adiabatic inversion and compared this with signals following hard and soft inversion pulses. The effects of the different preparations on relaxation dynamics were explored. Inversion recovery experiments were performed on ex vivo bovine and porcine brains using 360-MHz (8.4 T) and 200-MHz (4.7 T) NMR spectrometers, respectively, using broadband rectangular, adiabatic, and sinc inversion pulses as well as a long rectangular saturation pulse. Analogous human brain MRI experiments were performed at 3 T using single-slice echo-planar imaging. Relaxation data were fitted by mono- and biexponential decay models. Further fitting analysis was performed using only two inversion delay times. Adiabatic and sinc inversion left much of the nonaqueous magnetization along B 0 and resulted in biexponential relaxation. Saturation of both aqueous and nonaqueous magnetization components led to effectively monoexponential T 1 relaxation. Typical adiabatic inversion pulses do not, as has been widely assumed, saturate the nonaqueous proton magnetization in white matter. Unequal magnetization states in aqueous and nonaqueous 1 H reservoirs prepared by soft and adiabatic pulses result in biexponential T 1 relaxation. Both pools must be prepared in the same magnetization state (e.g., saturated or inverted) in order to observe consistent monoexponential relaxation.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Animais , Bovinos , Suínos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar
3.
NMR Biomed ; 36(6): e4808, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35916067

RESUMO

Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Lipídeos de Membrana , Campos Magnéticos , Movimento (Física)
4.
Magn Reson Med ; 89(5): 1809-1824, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36511247

RESUMO

PURPOSE: We investigated the correlation, reproducibility, and effect of white matter fiber orientation for three myelin-sensitive MRI techniques: magnetization transfer ratio (MTR), inhomogeneous magnetization transfer ratio (ihMTR), and gradient and spin echo-derived myelin water fraction (MWF). METHODS: We measured the three metrics in 17 white and three deep grey matter regions in 17 healthy adults at 3 T. RESULTS: We found a strong correlation between ihMTR and MTR (r = 0.70, p < 0.001) and ihMTR and MWF (r = 0.79, p < 0.001), and a weaker correlation between MTR and MWF (r = 0.54, p < 0.001). The dynamic range in white matter was greatest for MWF (2.0%-27.5%), followed by MTR (14.4%-23.2%) and then ihMTR (1.2%-5.4%). The average scan-rescan coefficient of variation for white matter regions was 0.6% MTR, 0.3% ihMTR, and 0.7% MWF in metric units; however, when adjusted by the dynamic range, these became 6.3%, 6.1% and 2.8%, respectively. All three metrics varied with fiber direction: MWF and ihMTR were lower in white matter fibers perpendicular to B0 by 6% and 1%, respectively, compared with those parallel, whereas MTR was lower by 0.5% at about 40°, with the highest values at 90°. However, separating the apparent orientation dependence by white matter region revealed large dissimilarities in the trends, suggesting that real differences in myelination between regions are confounding the apparent orientation dependence measured using this method. CONCLUSION: The strong correlation between ihMTR and MWF suggests that these techniques are measuring the same myelination; however, the larger dynamic range of MWF may provide more power to detect small differences in myelin.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Adulto , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Água , Biomarcadores
5.
J Magn Reson ; 338: 107205, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390716

RESUMO

Inhomogeneous magnetization transfer (ihMT) is a novel MRI technique used to measure white matter myelination in the brain and spinal cord. In the brain, ihMT has a strong orientation dependence which is likely to arise from the anisotropy of dipolar couplings between protons on oriented lipids in the myelin bilayers. We measured the orientation dependence of the second moment (M2) of the lineshape, dipolar order relaxation rate (R1D), and ihMT ratio (ihMTR) in an oriented phospholipid bilayer at 9.4 T. We found a strong orientation dependence in all three parameters. ihMTR and R1D were maximized when the bilayers were aligned perpendicular to B0 and minimized near the magic angle (∼54.7°). M2 followed an orientation dependence given by the second Legendre polynomial squared as predicted by the form of the secular dipolar Hamiltonian. These results were used to calculate the orientation dependence of R1D and ihMTR in a diffusionless myelin sheath model, which showed ihMTR was maximised for fibers perpendicular to B0 and minimised at 45°, similar to ex-vivo spinal cord with a larger prepulse frequency offset, but in contrast to in vivo brain findings. Adding fiber dispersion to this model smoothed the orientation dependence curve as expected. Our results suggest the importance of the effects of lipid diffusion and prepulse offset frequency on ihMTR.


Assuntos
Fosfolipídeos , Substância Branca , Encéfalo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina
6.
Magn Reson Med ; 87(2): 915-931, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490909

RESUMO

PURPOSE: The decomposition of multi-exponential decay data into a T2 spectrum poses substantial challenges for conventional fitting algorithms, including non-negative least squares (NNLS). Based on a combination of the resolution limit constraint and machine learning neural network algorithm, a data-driven and highly tailorable analysis method named spectrum analysis for multiple exponentials via experimental condition oriented simulation (SAME-ECOS) was proposed. THEORY AND METHODS: The theory of SAME-ECOS was derived. Then, a paradigm was presented to demonstrate the SAME-ECOS workflow, consisting of a series of calculation, simulation, and model training operations. The performance of the trained SAME-ECOS model was evaluated using simulations and six in vivo brain datasets. The code is available at https://github.com/hanwencat/SAME-ECOS. RESULTS: Using NNLS as the baseline, SAME-ECOS achieved over 15% higher overall cosine similarity scores in producing the T2 spectrum, and more than 10% lower mean absolute error in calculating the myelin water fraction (MWF), as well as demonstrated better robustness to noise in the simulation tests. Applying to in vivo data, MWF from SAME-ECOS and NNLS was highly correlated among all study participants. However, a distinct separation of the myelin water peak and the intra/extra-cellular water peak was only observed in the mean T2 spectra determined using SAME-ECOS. In terms of data processing speed, SAME-ECOS is approximately 30 times faster than NNLS, achieving a whole-brain analysis in 3 min. CONCLUSION: Compared with NNLS, the SAME-ECOS method yields much more reliable T2 spectra in a dramatically shorter time, increasing the feasibility of multi-component T2 decay analysis in clinical settings.


Assuntos
Bainha de Mielina , Água , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Análise Espectral
7.
J Neuroimaging ; 31(6): 1119-1125, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34310789

RESUMO

BACKGROUND AND PURPOSE: Myelin water fraction (MWF) is a histopathologically validated in vivo myelin marker. As MWF is the proportion of water with a short T2 relative to the total water, increases in water from edema and inflammation may confound MWF determination in multiple sclerosis (MS) lesions. Total water content (TWC) measurement enables calculation of absolute myelin water content (MWC) and can be used to distinguish edema/inflammation from demyelination. We assessed what influence changes in total water might have on MWF by calculating MWC values in new MS lesions. METHODS: 3T 32-echo T2 relaxation data were collected monthly for 6 months from six relapsing-remitting MS participants. TWC was determined and multiplied with MWF images to calculate corrected MWC images. The effect of this water content correction was examined in 20 new lesions by comparing mean MWF and MWC over time. RESULTS: On average, at lesion first appearance, lesion TWC increased by 6.4% (p = .003; range: -1% to +21%), MWF decreased by 24% (p = .006; range: -70% to +12%), and MWC decreased by 20% (p = .026; range: -68% to +21%), relative to prelesion values. Average TWC in lesions then gradually decreased, whereas MWF and MWC remained low. The shape of the MWF and MWC lesion evolution curves was nearly identical, differing only by an offset. CONCLUSION: MWF mirrors MWC and is able to monitor myelin in new lesions. Even after taking into account water content increases, MWC still decreased at lesion first appearance attributed to demyelination.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Água
8.
Hum Brain Mapp ; 42(10): 3119-3130, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33939206

RESUMO

Magnetic resonance spectroscopy (MRS) measures cerebral metabolite concentrations, which can inform our understanding of the neurobiological processes associated with stroke recovery. Here, we investigated whether metabolite concentrations in primary motor and somatosensory cortices (sensorimotor cortex) are impacted by stroke and relate to upper-extremity motor impairment in 45 individuals with chronic stroke. Cerebral metabolite estimates were adjusted for cerebrospinal fluid and brain tissue composition in the MRS voxel. Upper-extremity motor impairment was indexed with the Fugl-Meyer (FM) scale. N-acetylaspartate (NAA) concentration was reduced bilaterally in stroke participants with right hemisphere lesions (n = 23), relative to right-handed healthy older adults (n = 15; p = .006). Within the entire stroke sample (n = 45) NAA and glutamate/glutamine (GLX) were lower in the ipsilesional sensorimotor cortex, relative to the contralesional cortex (NAA: p < .001; GLX: p = .003). Lower ipsilesional NAA was related to greater extent of corticospinal tract (CST) injury, quantified by a weighted CST lesion load (p = .006). Cortical NAA and GLX concentrations did not relate to the severity of chronic upper-extremity impairment (p > .05), including after a sensitivity analysis imputing missing metabolite data for individuals with large cortical lesions (n = 5). Our results suggest that NAA, a marker of neuronal integrity, is sensitive to stroke-related cortical damage and may provide mechanistic insights into cellular processes of cortical adaptation to stroke. However, cortical MRS metabolites may have limited clinical utility as prospective biomarkers of upper-extremity outcomes in chronic stroke.


Assuntos
Ácido Aspártico/análogos & derivados , Atividade Motora , Córtex Sensório-Motor/metabolismo , Acidente Vascular Cerebral/metabolismo , Extremidade Superior , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico/metabolismo , Doença Crônica , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia
9.
Heliyon ; 7(4): e06709, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898831

RESUMO

The diffuse and continually evolving secondary changes after mild traumatic brain injury (mTBI) make it challenging to assess alterations in brain-behaviour relationships. In this study we used myelin water imaging to evaluate changes in myelin water fraction (MWF) in individuals with chronic mTBI and persistent symptoms and measured their cognitive status using the NIH Toolbox Cognitive Battery. Fifteen adults with mTBI with persistent symptoms and twelve age, gender and education matched healthy controls took part in this study. We found a significant decrease in global white matter MWF in patients compared to the healthy controls. Significantly lower MWF was evident in most white matter region of interest (ROIs) examined including the corpus callosum (separated into genu, body and splenium), minor forceps, right anterior thalamic radiation, left inferior longitudinal fasciculus; and right and left superior longitudinal fasciculus and corticospinal tract. Although patients showed lower cognitive functioning, no significant correlations were found between MWF and cognitive measures. These results suggest that individuals with chronic mTBI who have persistent symptoms have reduced MWF.

10.
J Alzheimers Dis ; 80(1): 91-101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33523006

RESUMO

BACKGROUND: Myelin damage is a salient feature in cerebral small vessel disease (cSVD). Of note, myelin damage extends into the normal appearing white matter (NAWM). Currently, the specific role of myelin content in cognition is poorly understood. OBJECTIVE: The objective of this exploratory study was to investigate the association between NAWM myelin and cognitive function in older adults with cSVD. METHODS: This exploratory study included 55 participants with cSVD. NAWM myelin was measured using myelin water imaging and was quantified as myelin water fraction (MWF). Assessment of cognitive function included processing speed (Trail Making Test Part A), set shifting (Trail Making Test Part B minus A), working memory (Verbal Digit Span Backwards Test), and inhibition (Stroop Test). Multiple linear regression analyses assessed the contribution of NAWM MWF on cognitive outcomes controlling for age, education, and total white matter hyperintensity volume. The overall alpha was set at ≤0.05. RESULTS: After accounting for age, education, and total white matter hyperintensity volume, lower NAWM MWF was significantly associated with slower processing speed (ß â€Š= -0.29, p = 0.037) and poorer working memory (ß= 0.30, p = 0.048). NAWM MWF was not significantly associated with set shifting or inhibitory control (p > 0.132). CONCLUSION: Myelin loss in NAWM may play a role in the evolution of impaired processing speed and working memory in people with cSVD. Future studies, with a longitudinal design and larger sample sizes, are needed to fully elucidate the role of myelin as a potential biomarker for cognitive function.


Assuntos
Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/psicologia , Cognição , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Bainha de Mielina/metabolismo , Substância Branca/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Memória de Curto Prazo , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação , Teste de Stroop , Teste de Sequência Alfanumérica , Substância Branca/diagnóstico por imagem
11.
Sci Rep ; 11(1): 1369, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446710

RESUMO

The traditional approach for measuring myelin-associated water with quantitative magnetic resonance imaging (MRI) uses multi-echo T2 relaxation data to calculate the myelin water fraction (MWF). A fundamentally different approach, abbreviated "mcDESPOT", uses a more efficient steady-state acquisition to generate an equivalent metric (fM). Although previous studies have demonstrated inherent instability and bias in the complex mcDESPOT analysis procedure, fM has often been used as a surrogate for MWF. We produced and compared multivariate atlases of MWF and fM in healthy human brain and cervical spinal cord (available online) and compared their ability to detect multiple sclerosis pathology. A significant bias was found in all regions (p < 10-5), albeit reversed for spinal cord (fM-MWF = - 3.4%) compared to brain (+ 6.2%). MWF and fM followed an approximately linear relationship for regions with MWF < ~ 10%. For MWF > ~ 10%, the relationship broke down and fM no longer increased in tandem with MWF. For multiple sclerosis patients, MWF and fM Z score maps showed overlapping areas of low Z score and similar trends between patients and brain regions, although those of fM generally had greater spatial extent and magnitude of severity. These results will guide future choice of myelin-sensitive quantitative MRI and improve interpretation of studies using either myelin imaging approach.


Assuntos
Encéfalo/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Magn Reson ; 323: 106909, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33453678

RESUMO

A full picture of longitudinal relaxation in complex heterogeneous environments like white matter brain tissue remains elusive. In tissue, successive approximations, from the solvation layer model to the two pool model, have highlighted how longitudinal magnetization evolution depends on both inter-compartmental exchange and spin-lattice relaxation. In white matter, however, these models fail to capture the behaviour of the two distinct aqueous pools, myelin water and intra/extra-cellular water. A challenge with testing more comprehensive multi-pool models lies in directly observing all pools, both aqueous and non-aqueous. In this work, we advance these efforts by integrating three main experimental and analytical elements: direct observation of the longitudinal relaxation of both the aqueous and the non-aqueous protons in white matter, a wide range of different initial conditions, and application of an analysis pipeline which includes lineshape, CPMG, and fitting of a four pool model. An eigenvector interpretation of the four pool model highlights how longitudinal relaxation in white matter depends on initial conditions. We find that a single set of model parameters is able to describe the entire range of relaxation behaviour observed in all the separable aqueous and non-aqueous pools in experiments involving six different initial conditions. Understanding of the nature and connectedness of the tissue components is crucial in the design and interpretation of many MRI measurements, especially those based on magnetization transfer and longitudinal relaxation. In particular, the dependency of relaxation behaviour on initial conditions is likely the basis for understanding method-dependent discrepancies in in vivo T1.


Assuntos
Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Animais , Bovinos , Prótons , Água
13.
Sci Rep ; 11(1): 269, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431990

RESUMO

Myelin water imaging is a quantitative neuroimaging technique that provides the myelin water fraction (MWF), a metric highly specific to myelin content, and the intra-/extra-cellular T2 (IET2), which is related to water and iron content. We coupled high-resolution data from 100 adults with gold-standard methodology to create an optimized anatomical brain template and accompanying MWF and IET2 atlases. We then used the MWF atlas to characterize how myelin content relates to demographic factors. In most brain regions, myelin content followed a quadratic pattern of increase during the third decade of life, plateau at a maximum around the fifth decade, then decrease during later decades. The ranking of mean myelin content between brain regions remained consistent across age groups. These openly available normative atlases can facilitate evaluation of myelin imaging results on an individual basis and elucidate the distribution of myelin content between brain regions and in the context of aging.


Assuntos
Encéfalo/metabolismo , Longevidade , Bainha de Mielina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Front Hum Neurosci ; 14: 568395, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192398

RESUMO

Magnetic resonance imaging (MRI) provides a means to non-invasively investigate the neurological links with dyslexia, a learning disability that affects one's ability to read. Most previous brain MRI studies of dyslexia and reading skill have used structural or diffusion imaging to reveal regional brain abnormalities. However, volumetric and diffusion MRI lack specificity in their interpretation at the microstructural level. Myelin is a critical neural component for brain function and plasticity, and as such, deficits in myelin may impact reading ability. MRI can estimate myelin using myelin water fraction (MWF) imaging, which is based on evaluation of the proportion of short T2 myelin-associated water from multi-exponential T2 relaxation analysis, but has not yet been applied to the study of reading or dyslexia. In this study, MWF MRI, intelligence, and reading assessments were acquired in 20 participants aged 10-18 years with a wide range of reading ability to investigate the relationship between reading ability and myelination. Group comparisons showed markedly lower MWF by 16-69% in poor readers relative to good readers in the left and right thalamus, as well as the left posterior limb of the internal capsule, left/right anterior limb of the internal capsule, left/right centrum semiovale, and splenium of the corpus callosum. MWF over the entire group also correlated positively with three different reading scores in the bilateral thalamus as well as white matter, including the splenium of the corpus callosum, left posterior limb of the internal capsule, left anterior limb of the internal capsule, and left centrum semiovale. MWF imaging from T2 relaxation suggests that myelination, particularly in the bilateral thalamus, splenium, and left hemisphere white matter, plays a role in reading abilities. Myelin water imaging thus provides a potentially valuable in vivo imaging tool for the study of dyslexia and its remediation.

15.
Magn Reson Med ; 84(3): 1264-1279, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32065474

RESUMO

PURPOSE: Myelin water imaging (MWI) provides a valuable biomarker for myelin, but clinical application has been restricted by long acquisition times. Accelerating the standard multi-echo T2 acquisition with gradient echoes (GRASE) or by 2D multi-slice data collection results in image blurring, contrast changes, and other issues. Compressed sensing (CS) can vastly accelerate conventional MRI. In this work, we assessed the use of CS for in vivo human MWI, using a 3D multi spin-echo sequence. METHODS: We implemented multi-echo T2 relaxation imaging with compressed sensing (METRICS) and METRICS with partial Fourier acceleration (METRICS-PF). Scan-rescan data were acquired from 12 healthy controls for assessment of repeatability. MWI data were acquired for METRICS in 9 m:58 s and for METRICS-PF in 7 m:25 s, both with 1.5 × 2 × 3 mm3 voxels, 56 echoes, 7 ms ΔTE, and 240 × 240 × 170 mm3 FOV. METRICS was compared with a novel multi-echo spin-echo gold-standard (MSE-GS) MWI acquisition, acquired for a single additional subject in 2 h:2 m:40 s. RESULTS: METRICS/METRICS-PF myelin water fraction had mean: repeatability coefficient 1.5/1.1, coefficient of variation 6.2/4.5%, and intra-class correlation coefficient 0.79/0.84. Repeatability metrics comparing METRICS with METRICS-PF were similar, and both sequences agreed with reference values from literature. METRICS images and quantitative maps showed excellent qualitative agreement with those of MSE-GS. CONCLUSION: METRICS and METRICS-PF provided highly repeatable MWI data without the inherent disadvantages of GRASE or 2D multi-slice acquisition. CS acceleration allows MWI data to be acquired rapidly with larger FOV, higher estimated SNR, more isotropic voxels and more echoes than with previous techniques. The approach introduced here generalizes to any multi-component T2 mapping application.


Assuntos
Processamento de Imagem Assistida por Computador , Bainha de Mielina , Benchmarking , Humanos , Imageamento por Ressonância Magnética , Água
16.
J Neuroimaging ; 30(2): 150-160, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32064721

RESUMO

BACKGROUND AND PURPOSE: Myelin water imaging (MWI) and diffusion tensor imaging (DTI) provide information about myelin and axon-related brain microstructure, which can be useful for investigating normal brain development and many childhood brain disorders. While pediatric DTI atlases exist, there are no pediatric MWI atlases available for the 9-10 years old age group. As myelination and structural development occurs throughout childhood and adolescence, studies of pediatric brain pathologies must use age-specific MWI and DTI healthy control data. We created atlases of myelin water fraction (MWF) and DTI metrics for healthy children aged 9-10 years for use as normative data in pediatric neuroimaging studies. METHODS: 3D-T1 , DTI, and MWI scans were acquired from 20 healthy children (mean age: 9.6 years, range: 9.2-10.3 years, 4 females). ANTs and FSL registration were used to create quantitative MWF and DTI atlases. Region of interest (ROI) analysis in nine white matter regions was used to compare pediatric MWF with adult MWF values from a recent study and to investigate the correlation between pediatric MWF and DTI metrics. RESULTS: Adults had significantly higher MWF than the pediatric cohort in seven of the nine white matter ROIs, but not in the genu of the corpus callosum or the cingulum. In the pediatric data, MWF correlated significantly with mean diffusivity, but not with axial diffusivity, radial diffusivity, or fractional anisotropy. CONCLUSIONS: Normative MWF and DTI metrics from a group of 9-10 year old healthy children provide a resource for comparison to pathologies. The age-specific atlases are ready for use in pediatric neuroimaging research and can be accessed: https://sourceforge.net/projects/pediatric-mri-myelin-diffusion/.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Bainha de Mielina/química , Água , Substância Branca/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino
17.
Neuroimage ; 210: 116551, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978542

RESUMO

PURPOSE: Based on a deep learning neural network (NN) algorithm, a super fast and easy to implement data analysis method was proposed for myelin water imaging (MWI) to calculate the myelin water fraction (MWF). METHODS: A NN was constructed and trained on MWI data acquired by a 32-echo 3D gradient and spin echo (GRASE) sequence. Ground truth labels were created by regularized non-negative least squares (NNLS) with stimulated echo corrections. Voxel-wise GRASE data from 5 brains (4 healthy, 1 multiple sclerosis (MS)) were used for NN training. The trained NN was tested on 2 healthy brains, 1 MS brain with segmented lesions, 1 healthy spinal cord, and 1 healthy brain acquired from a different scanner. RESULTS: Production of whole brain MWF maps in approximately 33 â€‹s can be achieved by a trained NN without graphics card acceleration. For all testing regions, no visual differences between NN and NNLS MWF maps were observed, and no obvious regional biases were found. Quantitatively, all voxels exhibited excellent agreement between NN and NNLS (all R2>0.98, p â€‹< â€‹0.001, mean absolute error <0.01). CONCLUSION: The time for accurate MWF calculation can be dramatically reduced to less than 1 â€‹min by the proposed NN, addressing one of the barriers facing future clinical feasibility of MWI.


Assuntos
Água Corporal/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Neuroimagem/métodos , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Magn Reson Imaging ; 67: 33-42, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31677990

RESUMO

Myelin water fraction (MWF) images in brain tend to be spatially noisy with unknown or no apparent spatial patterns structure, so values are therefore typically averaged over large white matter (WM) volumes. We investigated the existence of an inherent spatial structure in MWF maps and explored the benefits of examining MWF values along diffusion tensor imaging (DTI)-derived white matter tracts. We compared spatial anisotropy between MWF and the more widely-used fractional anisotropy (FA) measure. Sixteen major white matter fibre bundles were extracted based on DTI data from 41 healthy subjects. MWF coefficients of variation (CoV) were computed in sub-segments along each fibre tract and compared to MWF CoVs from the surrounding "tubes" - i.e. voxels just exterior to the tract - of each segment. We further assessed the consistency of the MWF along fibre bundles across subjects and investigated the benefit of examining MWF values in sections along each fibre bundle rather than integrating over the whole tract. CoVs of MWF and FA were lower in fibre bundles compared to their enclosing tubes in all investigated tracts. Both measures possessed a spatial gradient of CoV that was smaller aligned along, compared to perpendicular to, the fibre bundles. All WM tracts showed MWF profiles along their trajectory that were consistent across subjects and were more accurate than the mean overall fibre MWF value in estimating ages of the subjects. We conclude that, although less obvious visually, the spatial MWF distribution in white matter consistently follows a distinct pattern along underlying fibre bundles across subjects. Assessing MWF in sections along white matter tracts may provide a sensitive and robust way to assess myelin across subjects.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Bainha de Mielina/química , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Água/análise , Adulto Jovem
19.
Neuroimage Clin ; 23: 101896, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31276928

RESUMO

BACKGROUND: Rapid myelin water imaging (MWI) using a combined gradient and spin echo (GRASE) sequence can produce myelin specific metrics for the human brain. Spinal cord MWI could be similarly useful, but technical challenges have hindered routine application. GRASE rapid MWI was recently successfully implemented for imaging of healthy cervical spinal cord and may complement other advanced imaging methods, such as diffusion tensor imaging (DTI) and quantitative T1 (qT1). OBJECTIVE: To demonstrate the feasibility of cervical cord GRASE rapid MWI in multiple sclerosis (MS), primary lateral sclerosis (PLS) and neuromyelitis optica spectrum disorder (NMO), with comparison to DTI and qT1 metrics. METHODS: GRASE MWI, DTI and qT1 data were acquired in 2 PLS, 1 relapsing-remitting MS (RRMS), 1 primary-progressive MS (PPMS) and 2 NMO subjects, as well as 6 age (±3 yrs) and sex matched healthy controls (HC). Internal cord structure guided template registrations, used for region of interest (ROI) analysis. Z score maps were calculated for the difference between disease subject and mean HC metric values. RESULTS: PLS subjects had low myelin water fraction (MWF) in the lateral funiculi compared to HC. RRMS subject MWF was heterogeneous within the cord. The PPMS subject showed no trends in ROI results but had a region of low MWF Z score corresponding to a focal lesion. The NMO subject with a longitudinally extensive transverse myelitis lesion had low values for whole cord mean MWF of 12.8% compared to 24.3% (standard deviation 2.2%) for HC. The NMO subject without lesions also had low MWF compared to HC. DTI and qT1 metrics showed similar trends, corroborating the MWF results and providing complementary information. CONCLUSION: GRASE is sufficiently sensitive to detect decreased myelin within MS spinal cord plaques, NMO lesions, and PLS diffuse spinal cord injury. Decreased MWF in PLS is consistent with demyelination secondary to motor neuron degeneration. GRASE MWI is a feasible method for rapid assessment of myelin content in the cervical spinal cord and provides complementary information to that of DTI and qT1 measures.


Assuntos
Medula Cervical/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Doença dos Neurônios Motores/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Bainha de Mielina , Neuromielite Óptica/diagnóstico por imagem , Adulto , Medula Cervical/patologia , Imagem de Tensor de Difusão/normas , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/patologia , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Neuromielite Óptica/patologia , Sensibilidade e Especificidade
20.
NMR Biomed ; 32(6): e4083, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30889311

RESUMO

INTRODUCTION: Clinical trials that involve participants from multiple sites necessitate standardized and reliable quantitative MRI outcomes to detect significant group differences over time. Metabolite concentrations measured by proton MRS (1 H-MRS) provide valuable information about in vivo metabolism of the central nervous system, but can vary based on the acquisition and quantitation methods used by different MR sites. Therefore, we investigated the intra- and inter-site reproducibility of metabolite concentrations measured by 1 H-MRS on MRI scanners from a single manufacturer across six sites. METHODS: Five healthy controls were scanned twice within 24 h at six participating 3 T MR sites with large single-voxel PRESS (TE/TR/NSA = 36 ms/4000 ms/56) and anatomical images for voxel positioning and correction of partial volume relaxation. Absolute metabolite concentrations were calculated relative to the T1 and T2 relaxation corrected signal from water. Intra- and inter-site reproducibility was assessed using Bland-Altman plots and intra- and inter-site coefficient of variation (CoV) as well as intra- and inter-site intra-class correlation coefficient. RESULTS: The median intra-site CoVs for the five major metabolite concentrations ([NAA], [tCr], [Glu], [tCho] and [Ins]) were between 2.5 and 5.3%. Inter-site CoVs were also low, with the median CoVs for all metabolites between 3.7 and 6.4%. Metabolite concentrations were robust to small inconsistencies in voxel placement and site was not the driving factor in the variance of the measurement of any metabolite concentration. Between-subject differences accounted for the majority of the concentration variability for creatine, choline and myo-inositol (42-65% of the variance). CONCLUSION: A large single-voxel 1 H-MRS acquisition from a single manufacturer's MRI scanner is highly reproducible and reliable for multi-site clinical trials.


Assuntos
Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Adulto , Feminino , Humanos , Modelos Lineares , Masculino , Metaboloma , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...