Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 107: 110684, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080443

RESUMO

In this study, we examined the activation of non-canonical nuclear factor Kappa B (NFκB) signalling in U2OS cells, a cellular metastatic bone cancer model. Whilst Lymphotoxin α1ß2 (LTα1ß2) stimulated the expected slow, delayed, sustained activation of serine 866/870 p100 phosphorylation and increased cellular expression of p52 NFκB, we found that canonical agonists, Interleukin-1ß (IL-1ß) and also Tumour necrosis factor-α (TNFα) generated a rapid transient increase in pp100, which was maximal by 15-30 min. This rapid phosphorylation was also observed in other cells types, such as DU145 and HCAECs suggesting the phenomenon is universal. IKKα deletion using CRISPR/Cas9 revealed an IKKα-dependent mechanism for serine 866/870 and additionally serine 872 p100 phosphorylation for both IL-1ß and LTα1ß2. In contrast, knockdown of IKKß using siRNA or pharmacological inhibition of IKKß activity was without effect on p100 phosphorylation. Pre-incubation of cells with the NFκB inducing-kinase (NIK) inhibitor, CW15337, had no effect on IL-1ß induced phosphorylation of p100 however, the response to LTα1ß2 was virtually abolished. Surprisingly IL-1ß also stimulated p52 nuclear translocation as early as 60 min, this response and the concomitant p65 translocation was partially reduced by IKKα deletion. Furthermore, p52 nuclear translocation was unaffected by CW15337. In contrast, the response to LTα1ß2 was essentially abolished by both IKKα deletion and CW15337. Taken together, these finding reveal novel forms of NFκB non-canonical signalling stimulated by ligands that activate the canonical NFκB pathway strongly such as IL-1ß.


Assuntos
Quinase I-kappa B , Interleucina-1beta , NF-kappa B , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Quinase I-kappa B/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo
2.
Mol Oncol ; 17(6): 1112-1128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36550750

RESUMO

Preventing or overcoming resistance to the Bcl-2 inhibitor venetoclax is an emerging unmet clinical need in patients with chronic lymphocytic leukaemia (CLL). The upregulation of anti-apoptotic Bcl-2 members through signalling pathways within the tumor microenvironment appears as a major factor leading to resistance to venetoclax. Previously, we reported that T cells can drive resistance through CD40 and non-canonical NF-κB activation and subsequent Bcl-XL induction. Moreover, the T cell-derived cytokines IL-21 and IL-4 differentially affect Bcl-XL expression and sensitivity to venetoclax via unknown mechanisms. Here, we mechanistically dissected how Bcl-XL is regulated in the context of JAK-STAT signalling in primary CLL. First, we demonstrated a clear antagonistic role of IL-21/STAT3 signalling in the NF-κB-mediated expression of Bcl-XL, whereas IL-4/STAT6 further promoted the expression of Bcl-XL. In comparison, Bfl-1, another NF-κB target, was not differentially affected by either cytokine. Second, STAT3 and STAT6 affected Bcl-XL transcription by binding to its promoter without disrupting the DNA-binding activity of NF-κB. Third, in situ proximity ligation assays (isPLAs) indicated crosstalk between JAK-STAT signalling and NF-κB, in which STAT3 inhibited canonical NF-κB by accelerating nuclear export, and STAT6 promoted non-canonical NF-κB. Finally, NF-κB inducing kinase (NIK) inhibition interrupted the NF-κB/STAT crosstalk and resensitized CLL cells to venetoclax. In conclusion, we uncovered distinct crosstalk mechanisms that shape the NF-κB response in CLL towards venetoclax sensitivity or resistance via Bcl-XL, thereby revealing new potential therapeutic targets.


Assuntos
Leucemia Linfocítica Crônica de Células B , NF-kappa B , Humanos , Apoptose , Resistencia a Medicamentos Antineoplásicos , Interleucina-4/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Microambiente Tumoral
3.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326640

RESUMO

In this study, we evaluated an NF-κB inducing kinase (NIK) inhibitor, CW15337, in primary chronic lymphocytic leukemia (CLL) cells, CLL and multiple myeloma (MM) cell lines and normal B- and T-lymphocytes. Basal NF-κB subunit activity was characterized using an enzyme linked immunosorbent assay (ELISA), and the effects of NIK inhibition were then assessed in terms of cytotoxicity and the expression of nuclear NF-κB subunits following monoculture and co-culture with CD40L-expressing fibroblasts, as a model of the lymphoid niche. CW15337 induced a dose-dependent increase in apoptosis, and nuclear expression of the non-canonical NF-κB subunit, p52, was correlated with sensitivity to CW15337 (p = 0.01; r2 = 0.39). Co-culture on CD40L-expressing cells induced both canonical and non-canonical subunit expression in nuclear extracts, which promoted in vitro resistance against fludarabine and ABT-199 (venetoclax) but not CW15337. Furthermore, the combination of CW15337 with fludarabine or ABT-199 showed cytotoxic synergy. Mechanistically, CW15337 caused the selective inhibition of non-canonical NF-κB subunits and the transcriptional repression of BCL2L1, BCL2A1 and MCL1 gene transcription. Taken together, these data suggest that the NIK inhibitor, CW15337, exerts its effects via suppression of the non-canonical NF-κB signaling pathway, which reverses BCL2 family-mediated resistance in the context of CD40L stimulation.

4.
Anal Chem ; 93(37): 12786-12792, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34505518

RESUMO

Mitochondrial pH (pHmito) is intimately related to mitochondrial function, and aberrant values for pHmito are linked to several disease states. We report the design, synthesis, and application of mitokyne 1-the first small molecule pHmito sensor for stimulated Raman scattering (SRS) microscopy. This ratiometric probe can determine subtle changes in pHmito in response to external stimuli and the inhibition of both the electron transport chain and ATP synthase with small molecule inhibitors. In addition, 1 was also used to monitor mitochondrial dynamics in a time-resolved manner with subcellular spatial resolution during mitophagy providing a powerful tool for dissecting the molecular and cell biology of this critical organelle.


Assuntos
Mitocôndrias , Mitofagia , Concentração de Íons de Hidrogênio , Microscopia , Análise Espectral Raman
5.
Cell Death Differ ; 28(5): 1658-1668, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495554

RESUMO

In chronic lymphocytic leukemia (CLL), the lymph node (LN) microenvironment delivers critical survival signals by inducing the expression of anti-apoptotic Bcl-2 members Bcl-XL, Bfl-1, and Mcl-1, resulting in apoptosis blockade. We determined previously that resistance against various drugs, among which is the clinically applied BH3 mimetic venetoclax, is dominated by upregulation of the anti-apoptotic regulator Bcl-XL. Direct clinical targeting of Bcl-XL by, e.g., Navitoclax is however not desirable due to induction of thrombocytopenia. Since the actual regulation of Bcl-XL in CLL in the context of the LN microenvironment is not well elucidated, we investigated various candidate LN signals to drive Bcl-XL expression. We found a dominance for NF-κB signaling upon CD40 stimulation, which results in activation of both the canonical and non-canonical NF-κB signaling pathways. We demonstrate that expression of Bcl-XL is first induced by the canonical NF-κB pathway, and subsequently boosted and continued via non-canonical NF-κB signaling through stabilization of NIK. NF-κB subunits p65 and p52 can both bind to the Bcl-XL promoter and activate transcription upon CD40 stimulation. Moreover, canonical NF-κB signaling was correlated with Bfl-1 expression, whereas Mcl-1 in contrast, was not transcriptionally regulated by NF-κB. Finally, we applied a novel compound targeting NIK to selectively inhibit the non-canonical NF-κB pathway and showed that venetoclax-resistant CLL cells were sensitized to venetoclax. In conclusion, protective signals from the CLL microenvironment can be tipped towards apoptosis sensitivity by interfering with non-canonical NF-κB signaling.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Transfecção , Microambiente Tumoral
6.
Prostate ; 80(14): 1188-1202, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33258506

RESUMO

BACKGROUND: As the survival of castration-resistant prostate cancer (CRPC) remains poor, and the nuclear factor-κB (NF-κB) pathways play key roles in prostate cancer (PC) progression, several studies have focused on inhibiting the NF-κB pathway through generating inhibitory κB kinase subunit α (IKKα) small molecule inhibitors. However, the identification of prognostic markers able to discriminate which patients could benefit from IKKα inhibitors is urgently required. The present study investigated the prognostic value of IKKα, IKKα phosphorylated at serine 180 (p-IKKα S180) and threonine 23 (p-IKKα T23), and their relationship with the androgen receptor (AR) and Ki67 proliferation index to predict patient outcome. METHODS: A cohort of 115 patients with hormone-naïve PC (HNPC) and CRPC specimens available were used to assess tumor cell expression of proteins within both the cytoplasm and the nucleus by immunohistochemistry. The expression levels were dichotomized (low vs high) to determine the associations between IKKα, AR, Ki67, and patients'Isurvival. In addition, an analysis was performed to assess potential IKKα associations with clinicopathological and inflammatory features, and potential IKKα correlations with other cancer pathways essential for CRPC growth. RESULTS: High levels of cytoplasmic IKKα were associated with a higher cancer-specific survival in HNPC patients with low AR expression (hazards ratio [HR], 0.33; 95% confidence interval [CI] log-rank, 0.11-0.98; P = .04). Furthermore, nuclear IKKα (HR, 2.60; 95% CI, 1.27-5.33; P = .01) and cytoplasmic p-IKKα S180 (HR, 2.10; 95% CI, 1.17-3.76; P = .01) were associated with a lower time to death from recurrence in patients with CRPC. In addition, high IKKα expression was associated with high levels of T-cells (CD3+ P = .01 and CD8+ P = .03) in HNPC; however, under castration conditions, high IKKα expression was associated with high levels of CD68+ macrophages (P = .04), higher Gleason score (P = .01) and more prostate-specific antigen concentration (P = .03). Finally, we identified crosstalk between IKKα and members of the canonical NF-κB pathway in the nucleus of HNPC. Otherwise, IKKα phosphorylated by noncanonical NF-κB and Akt pathways correlated with members of the canonical NF-κB pathway in CRPC. CONCLUSION: The present study reports that patients with CRPC expressing high levels of nuclear IKKα or cytoplasmic p-IKKα S180, which associated with a lower time to death from recurrence, may benefit from IKKα inhibitors.


Assuntos
Quinase I-kappa B/metabolismo , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias da Próstata/enzimologia , Idoso , Biomarcadores Tumorais/metabolismo , Núcleo Celular/enzimologia , Estudos de Coortes , Citoplasma/enzimologia , Humanos , Quinase I-kappa B/imunologia , Imunidade Inata , Imuno-Histoquímica , Antígeno Ki-67/metabolismo , Masculino , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Prognóstico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/imunologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Taxa de Sobrevida
7.
Analyst ; 145(15): 5289-5298, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32672252

RESUMO

Intracellular pH (pHi) homeostasis is intertwined with a myriad of normal cellular behaviors as well as pathological processes. As such, small molecule probes for the measurement of pHi are invaluable tools for chemical biology, facilitating the study of the role of pH in cellular function and disease. The field of small molecule pHi sensors has traditionally been dominated with probes based on fluorescent scaffolds. In this study, a series of low molecular weight (<260) oligoyne compounds have been developed which exhibit pH sensitive alkyne stretching frequencies (νalkyne) in Raman spectroscopy. The modular design of the compounds enabled tuneability of their pKa(H) through simple structural modification, such that continuous pH sensitivity is achieved over the range 2-10. Alkyne stretching bands reside in the 'cell-silent' region of the Raman spectrum (1800-2600 cm-1) and are readily detectable in a cellular environment with subcellular spatial resolution. This enabled the application of a pH sensitive oligoyne compound to the ratiometric sensing of pHi in prostate cancer (PC3) cells in response to drug treatment. We propose that probes based on Alkyne Tag Raman Imaging offer an entirely new platform for the sensing of pHi, complementary to fluorescence microscopy.


Assuntos
Alcinos , Análise Espectral Raman , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Espaço Intracelular , Microscopia de Fluorescência
8.
Mol Cancer Ther ; 18(12): 2394-2406, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31488701

RESUMO

Arry-520 is an advanced drug candidate from the Eg5 inhibitor class undergoing clinical evaluation in patients with relapsed or refractory multiple myeloma. Here, we show by structural analysis that Arry-520 binds stoichiometrically to the motor domain of Eg5 in the conventional allosteric loop L5 pocket in a complex that suggests the same structural mechanism as other Eg5 inhibitors. We have previously shown that acquired resistance through mutations in the allosteric-binding site located at loop L5 in the Eg5 structure appears to be independent of the inhibitors' scaffold, which suggests that Arry-520 will ultimately have the same fate. When Arry-520 was assessed in two cell lines selected for the expression of either Eg5(D130A) or Eg5(L214A) STLC-resistant alleles, mutations previously shown to convey resistance to this class of inhibitors, it was inactive in both. Surprisingly, when the cells were challenged with ispinesib, another Eg5 inhibitor, the Eg5(D130A) cells were resistant, but those expressing Eg5(L214A) were strikingly sensitive. Molecular dynamics simulations suggest that subtle differences in ligand binding and flexibility in both compound and protein may alter allosteric transmission from the loop L5 site that do not necessarily result in reduced inhibitory activity in mutated Eg5 structures. Although we predict that cells challenged with Arry-520 in the clinical setting are likely to acquire resistance through point mutations in the Eg5-binding site, the data for ispinesib suggest that this resistance mechanism is not scaffold independent as previously thought, and new inhibitors can be designed that retain inhibitory activity in these resistant cells.


Assuntos
Antimitóticos/uso terapêutico , Tiadiazóis/uso terapêutico , Antimitóticos/farmacologia , Técnicas de Cultura de Células , Humanos , Modelos Moleculares , Tiadiazóis/farmacologia
9.
J Med Chem ; 62(7): 3658-3676, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30889352

RESUMO

Sphingosine kinase enzymes (SK1 and SK2) catalyze the conversion of sphingosine into sphingosine 1-phosphate and play a key role in lipid signaling and cellular responses. Mapping of isoform amino acid sequence differences for SK2 onto the recently available crystal structures of SK1 suggests that subtle structural differences exist in the foot of the lipid-binding "J-channel" in SK2, the structure of which has yet to be defined by structural biology techniques. We have probed these isoform differences with a ligand series derived from the potent SK1-selective inhibitor, PF-543. Here we show how it is possible, even with relatively conservative changes in compound structure, to systematically tune the activity profile of a ligand from ca. 100-fold SK1-selective inhibition, through equipotent SK1/SK2 inhibition, to reversed 100-fold SK2 selectivity, with retention of nanomolar potency.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Isoformas de Proteínas/metabolismo , Animais , Humanos , Ligantes , Lisofosfolipídeos/metabolismo , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Esfingosina/análogos & derivados , Esfingosina/metabolismo
10.
Cells ; 7(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347849

RESUMO

The cellular kinases inhibitory-κB kinase (IKK) α and Nuclear Factor-κB (NF-κB)-inducing kinase (NIK) are well recognised as key central regulators and drivers of the non-canonical NF-κB cascade and as such dictate the initiation and development of defined transcriptional responses associated with the liberation of p52-RelB and p52-p52 NF-κB dimer complexes. Whilst these kinases and downstream NF-κB complexes transduce pro-inflammatory and growth stimulating signals that contribute to major cellular processes, they also play a key role in the pathogenesis of a number of inflammatory-based conditions and diverse cancer types, which for the latter may be a result of background mutational status. IKKα and NIK, therefore, represent attractive targets for pharmacological intervention. Here, specifically in the cancer setting, we reflect on the potential pathophysiological role(s) of each of these kinases, their associated downstream signalling outcomes and the stimulatory and mutational mechanisms leading to their increased activation. We also consider the downstream coordination of transcriptional events and phenotypic outcomes illustrative of key cancer 'Hallmarks' that are now increasingly perceived to be due to the coordinated recruitment of both NF-κB-dependent as well as NF-κB⁻independent signalling. Furthermore, as these kinases regulate the transition from hormone-dependent to hormone-independent growth in defined tumour subsets, potential tumour reactivation and major cytokine and chemokine species that may have significant bearing upon tumour-stromal communication and tumour microenvironment it reiterates their potential to be drug targets. Therefore, with the emergence of small molecule kinase inhibitors targeting each of these kinases, we consider medicinal chemistry efforts to date and those evolving that may contribute to the development of viable pharmacological intervention strategies to target a variety of tumour types.

11.
J Med Chem ; 60(16): 7043-7066, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737909

RESUMO

IKKß plays a central role in the canonical NF-kB pathway, which has been extensively characterized. The role of IKKα in the noncanonical NF-kB pathway, and indeed in the canonical pathway as a complex with IKKß, is less well understood. One major reason for this is the absence of chemical tools designed as selective inhibitors for IKKα over IKKß. Herein, we report for the first time a series of novel, potent, and selective inhibitors of IKKα. We demonstrate effective target engagement and selectivity with IKKα in U2OS cells through inhibition of IKKα-driven p100 phosphorylation in the noncanonical NF-kB pathway without affecting IKKß-dependent IKappa-Bα loss in the canonical pathway. These compounds represent the first chemical tools that can be used to further characterize the role of IKKα in cellular signaling, to dissect this from IKKß and to validate it in its own right as a target in inflammatory diseases.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Biomarcadores Farmacológicos/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Quinase I-kappa B/química , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Subunidade p52 de NF-kappa B/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
12.
Curr Opin Biotechnol ; 48: 153-158, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28494275

RESUMO

RNA is the most mercurial of all biomacromolecules. In contrast to DNA, where the predominant role is the storage of genetic information, the biological role of RNA varies; ranging from a template-based intermediary in gene expression to playing a direct role in catalysis. Their high turnover and metabolic lability makes the detection of specific sequences particularly challenging. This review describes the latest synthetic biological developments that enable the direct imaging of RNA both in vitro and in their native cellular environment.


Assuntos
Imagem Molecular/métodos , RNA/química , RNA/metabolismo , Coloração e Rotulagem/métodos , Biologia Sintética/métodos , Humanos , RNA/genética
13.
Curr Protoc Nucleic Acid Chem ; 63: 8.10.1-8.10.41, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26623975

RESUMO

Pyrrole-imidazole polyamides (PAs) are a family of DNA-binding peptides that bind in the minor groove of double-stranded DNA (dsDNA) in a sequence-selective, programmable fashion. This protocol describes a detailed manual procedure for the solid-phase synthesis of this family of compounds. The protocol entails solution-phase synthesis of the Boc-protected pyrrole (Py) and imidazole (Im) carboxylic acid building blocks. This unit also describes the importance of choosing the appropriate condensing agent to form the amide linkages between each building block. Finally, a monomeric coupling protocol and a fragment-based approach are described that delivers PAs in 13% to 30% yield in 8 days.


Assuntos
Imidazóis/química , Poliaminas/química , Poliaminas/síntese química , Pirróis/química
14.
Arch Toxicol ; 88(12): 2213-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344023

RESUMO

Resveratrol, a natural compound endowed with multiple health-promoting effects, has received much attention given its potential for the treatment of cardiovascular, inflammatory, neurodegenerative, metabolic and age-related diseases. However, the translational potential of resveratrol has been limited by its specificity, poor bioavailability and uncertain toxicity. In recent years, there has been an accumulation of evidence demonstrating that resveratrol modulates sphingolipid metabolism. Moreover, resveratrol forms higher order oligomers that exhibit better selectivity and potency in modulating sphingolipid metabolism. This review evaluates the evidence supporting the modulation of sphingolipid metabolism and signaling as a mechanism of action underlying the therapeutic efficacy of resveratrol and oligomers in diseases, such as cancer.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Esfingolipídeos/metabolismo , Estilbenos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Sítios de Ligação , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Resveratrol , Transdução de Sinais , Estilbenos/química , Estilbenos/farmacocinética , Estilbenos/toxicidade
15.
Beilstein J Org Chem ; 10: 1333-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991286

RESUMO

A convergent and stereoselective synthesis of chiral cyclopentyl- and cyclohexylamine derivatives of nucleoside Q precursor (PreQ0) has been accomplished. This synthetic route allows for an efficient preparation of 4-substituted analogues with interesting three-dimensional character, including chiral cyclopentane-1,2-diol and -1,2,3-triol derivatives. This unusual substitution pattern provides a useful starting point for the discovery of novel bioactive molecules.

16.
Chembiochem ; 15(13): 1978-90, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25045155

RESUMO

Solution-phase self-association characteristics and DNA molecular-recognition properties are reported for three close analogues of minor-groove-binding ligands from the thiazotropsin class of lexitropsin molecules; they incorporate isopropyl thiazole as a lipophilic building block. Thiazotropsin B (AcImPy(iPr) ThDp) shows similar self-assembly characteristics to thiazotropsin A (FoPyPy(iPr) ThDp), although it is engineered, by incorporation of imidazole in place of N-methyl pyrrole, to swap its DNA recognition target from 5'-ACTAGT-3' to 5'-ACGCGT-3'. Replacement of the formamide head group in thiazotropsin A by nicotinamide in AIK-18/51 results in a measureable difference in solution-phase self-assembly character and substantially enhanced DNA association characteristics. The structures and associated thermodynamic parameters of self-assembled ligand aggregates and their complexes with their respective DNA targets are considered in the context of cluster targeting of DNA by minor-groove complexes.


Assuntos
DNA/efeitos dos fármacos , Tiazóis/farmacologia , Calorimetria , DNA/química , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Tiazóis/química
17.
Pharm Pat Anal ; 2(4): 481-98, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24237125

RESUMO

The transcription factors NF-κB and IFN control important signaling cascades and mediate the expression of a number of important pro-inflammatory cytokines, adhesion molecules, growth factors and anti-apoptotic survival proteins. IκB kinase (IKK) and IKK-related kinases (IKKε and TBK1) are key regulators of these biological pathways and, as such, modulators of these enzymes may be useful in the treatment of inflammatory diseases and cancer. We have reviewed the most recent IKK patent literature (2008-2012), added publications of interest overlooked in previous patent reviews and identified all the players involved in small-molecule inhibitors of the IKKs. This will provide the reader with a decisive summary of the IKK arena, a field that has reached maturity over a decade of research.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Patentes como Assunto , Animais , Indústria Farmacêutica , Humanos , Universidades
18.
J Med Chem ; 56(22): 9310-27, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24164513

RESUMO

The design, synthesis, and evaluation of the potency of new isoform-selective inhibitors of sphingosine kinases 1 and 2 (SK1 and SK2), the enzyme that catalyzes the phosphorylation of d-erythro-sphingosine to produce the key signaling lipid, sphingosine 1-phosphate, are described. Recently, we reported that 1-(4-octylphenethyl)piperidin-4-ol (RB-005) is a selective inhibitor of SK1. Here we report the synthesis of 43 new analogues of RB-005, in which the lipophilic tail, polar headgroup, and linker region were modified to extend the structure-activity relationship profile for this lead compound, which we explain using modeling studies with the recently published crystal structure of SK1. We provide a basis for the key residues targeted by our profiled series and provide further evidence for the ability to discriminate between the two isoforms using pharmacological intervention.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Piperidinas/química , Piperidinas/farmacologia , Benzamidas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fosfotransferases (Aceptor do Grupo Álcool)/química , Conformação Proteica , Compostos de Amônio Quaternário/química , Relação Estrutura-Atividade , Triazóis/química
19.
J Med Chem ; 56(16): 6317-29, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23875972

RESUMO

Development of drug resistance during cancer chemotherapy is one of the major causes of chemotherapeutic failure for the majority of clinical agents. The aim of this study was to investigate the underlying molecular mechanism of resistance developed by the mitotic kinesin Eg5 against the potent second-generation ispinesib analogue SB743921 (1), a phase I/II clinical candidate. Biochemical and biophysical data demonstrate that point mutations in the inhibitor-binding pocket decrease the efficacy of 1 by several 1000-fold. Surprisingly, the structures of wild-type and mutant Eg5 in complex with 1 display no apparent structural changes in the binding configuration of the drug candidate. Furthermore, ITC and modeling approaches reveal that resistance to 1 is not through conventional steric effects at the binding site but through reduced flexibility and changes in energy fluctuation pathways through the protein that influence its function. This is a phenomenon we have called "resistance by allostery".


Assuntos
Benzamidas/farmacologia , Cromonas/farmacologia , Cinesinas/fisiologia , Mitose , Regulação Alostérica , Humanos , Cinesinas/química , Cinesinas/efeitos dos fármacos , Cinética , Modelos Moleculares
20.
Biochem J ; 454(2): 283-93, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23782265

RESUMO

The atherogenic cytokine IL-6 (interleukin-6) induces pro-inflammatory gene expression in VECs (vascular endothelial cells) by activating the JAK (Janus kinase)/STAT3 (signal transducer and activator of transcription 3) signalling pathway, which is normally down-regulated by the STAT3-dependent induction of the E3 ubiquitin ligase component SOCS3 (suppressor of cytokine signalling 3). Novel treatments based on the regulation of SOCS3 protein levels could therefore have value in the treatment of diseases with an inflammatory component, such as atherosclerosis. To this end we carried out a screen of 1031 existing medicinal compounds to identify inducers of SOCS3 gene expression and identified the flavanoids naringenin and flavone as effective inducers of SOCS3 protein, mRNA and promoter activity. This was in contrast with the action of traditional JAK/STAT3 inhibitors and the polyphenol resveratrol, which effectively suppress SOCS3 gene expression. Both naringenin and flavone also effectively suppressed IL-6-stimulated phosphorylation of STAT3 (Tyr7°5) which led to suppression of IL-6-induction of the atherogenic STAT3 target gene MCP1 (monocyte chemotactic protein-1), suggesting that their ability to induce SOCS3 gene expression is STAT3-independent. Supporting this idea was the observation that the general kinase inhibitor compound C inhibits flavone- and cAMP-dependent, but not JAK-dependent, SOCS3 induction in VECs. Indeed, the ability of flavanoids to induce SOCS3 expression requires activation of the ERK (extracellular-signal-regulated kinase)-dependent transcription factor SP3, and not STAT3. In the present paper we therefore describe novel molecular actions of flavanoids, which control SOCS3 gene induction and suppression of STAT3 signalling in VECs. These mechanisms could potentially be exploited to develop novel anti-atherogenic therapies.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Endotélio Vascular/metabolismo , Flavonoides/metabolismo , Interleucina-6/antagonistas & inibidores , Fator de Transcrição STAT3/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/agonistas , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios não Esteroides/antagonistas & inibidores , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Receptor gp130 de Citocina/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Flavonoides/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Subunidade alfa de Receptor de Interleucina-6/metabolismo , Camundongos , Proteínas Mutantes/agonistas , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA