Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
Am J Ophthalmol ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740237

RESUMO

AIM: This study evaluates the performance of a multitrait polygenic risk score (PRS) in an independent cohort to predict incident or progression of keratoconus. DESIGN: Prospective cross-sectional and cohort study METHODS: Setting: Single-centre; Study population: 1,478 community-based young adults (18-30 years; 51% female), including 609 (52% female) who returned for an 8-year follow-up; Observation procedures: Scheimpflug imaging (Pentacam, Oculus), genotyping and development of a multitrait PRS previously validated to predict keratoconus in older adults.; Main outcome measure: Belin/Ambrόsio enhanced ectasia display (BAD-D) score and keratoconus, defined as BAD-D ≥2.6, were each analysed against the PRS using linear and logistic regression, respectively. RESULTS: Prevalence of keratoconus was 2.5% (95% confidence interval [CI]=1.9-3.6) in the cross-sectional cohort. Each z-score increase in PRS was associated with worse BAD-D z-score by 0.13 (95%CI= 0.08-0.18) and 1.6 increased odds of keratoconus. The 8-year keratoconus incidence was 2.6% (95%CI=1.3-4.0). Participants in the highest PRS decile were more likely to have incident keratoconus compared to the rest of the cohort (odds ratio= 3.85, 95%CI=1.21-12.22). For each z-score increase in PRS, 8-year change in BAD-D z-score worsened by 0.11 (95%CI=0.04 to 0.17). CONCLUSION: A PRS for keratoconus could be useful in predicting incident keratoconus and progression, demonstrating its potential utility in clinical settings to identify patients at high risk of post-surgery ectasia or those who may benefit most from keratoconus intervention.

2.
Ophthalmol Sci ; 4(4): 100504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38682030

RESUMO

Purpose: Genome-wide association studies have recently uncovered many loci associated with variation in intraocular pressure (IOP). Artificial intelligence (AI) can be used to interrogate the effect of specific genetic knockouts on the morphology of trabecular meshwork cells (TMCs) and thus, IOP regulation. Design: Experimental study. Subjects: Primary TMCs collected from human donors. Methods: Sixty-two genes at 55 loci associated with IOP variation were knocked out in primary TMC lines. All cells underwent high-throughput microscopy imaging after being stained with a 5-channel fluorescent cell staining protocol. A convolutional neural network was trained to distinguish between gene knockout and normal control cell images. The area under the receiver operator curve (AUC) metric was used to quantify morphological variation in gene knockouts to identify potential pathological perturbations. Main Outcome Measures: Degree of morphological variation as measured by deep learning algorithm accuracy of differentiation from normal controls. Results: Cells where LTBP2 or BCAS3 had been perturbed demonstrated the greatest morphological variation from normal TMCs (AUC 0.851, standard deviation [SD] 0.030; and AUC 0.845, SD 0.020, respectively). Of 7 multigene loci, 5 had statistically significant differences in AUC (P < 0.05) between genes, allowing for pathological gene prioritization. The mitochondrial channel most frequently showed the greatest degree of morphological variation (33.9% of cell lines). Conclusions: We demonstrate a robust method for functionally interrogating genome-wide association signals using high-throughput microscopy and AI. Genetic variations inducing marked morphological variation can be readily identified, allowing for the gene-based dissection of loci associated with complex traits. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
Sci Rep ; 14(1): 5403, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443430

RESUMO

This study evaluated patient experiences with genetic testing for inherited retinal diseases (IRDs) and the association between underlying knowledge, testing outcomes, and the perceived value of the results. An online survey was distributed to adults with IRDs and parents/guardians of dependents with IRDs who had had genetic testing. Data included details of genetic testing, pre- and post- test perceptions, Decision Regret Scale, perceived value of results, and knowledge of gene therapy. Of 135 responses (85% from adults with IRDs), genetic testing was primarily conducted at no charge through public hospitals (49%) or in a research setting (30%). Key motivations for genetic testing were to confirm IRD diagnosis and to contribute towards research. Those who had received a genetic diagnosis (odds ratio: 6.71; p < 0.001) and those self-reported to have good knowledge of gene therapy (odds ratio: 2.69; p = 0.018) were more likely to have gained confidence in managing their clinical care. For over 80% of respondents, knowing the causative gene empowered them to learn more about their IRD and explore opportunities regarding clinical trials. Key genetic counselling information needs include resources for family communications, structured information provision, and ongoing genetic support, particularly in the context of emerging ocular therapies, to enhance consistency in information uptake.


Assuntos
Retina , Doenças Retinianas , Adulto , Humanos , Estudos Transversais , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética , Doenças Retinianas/terapia , Testes Genéticos , Aprendizagem , Avaliação de Resultados da Assistência ao Paciente
4.
Clin Exp Ophthalmol ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38400607

RESUMO

BACKGROUND: A rebound in myopia progression following cessation of atropine eyedrops has been reported, yet there is limited data on the effects of stopping 0.01% atropine compared to placebo control. This study tested the hypothesis that there is minimal rebound myopia progression after cessation of 0.01% atropine eyedrops, compared to a placebo. METHODS: Children with myopia (n = 153) were randomised to receive 0.01% atropine eyedrops or a placebo (2:1 ratio) daily at bedtime during the 2-year treatment phase of the study. In the third year (wash-out phase), all participants ceased eyedrop instillation. Participants underwent an eye examination every 6 months, including measurements of spherical equivalent (SphE) after cycloplegia and axial length (AL). Changes in the SphE and AL during the wash-out phase and throughout the 3 years of the study (treatment + wash-out phase) were compared between the treatment and control groups. RESULTS: During the 1-year wash-out phase, SphE and AL progressed by -0.41D (95% CI = -0.33 to -0.22) and +0.20 mm (95% CI = -0.46 to -0.36) in the treatment group compared to -0.28D (95% CI = 0.11 to 0.16) and +0.13 mm (95% CI = 0.18 to 0.21) in the control group. Progression in the treatment group was significantly faster than in the control group (p = 0.016 for SphE and <0.001 for AL). Over the 3-year study period, the cumulative myopia progression was similar between the atropine and the control groups. CONCLUSIONS: These findings showed evidence of rapid myopia progression following cessation of 0.01% atropine. Further investigations are warranted to ascertain the long-term effects of atropine eyedrops.

5.
Hum Mol Genet ; 33(9): 739-751, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38272457

RESUMO

INTRODUCTION: Primary open angle glaucoma (POAG) is a leading cause of blindness globally. Characterized by progressive retinal ganglion cell degeneration, the precise pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered many genetic variants associated with elevated intraocular pressure (IOP), one of the key risk factors for POAG. We aimed to identify genetic and morphological variation that can be attributed to trabecular meshwork cell (TMC) dysfunction and raised IOP in POAG. METHODS: 62 genes across 55 loci were knocked-out in a primary human TMC line. Each knockout group, including five non-targeting control groups, underwent single-cell RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed fluorescence coupled with CellProfiler image analysis allowed for single-cell morphological profiling. RESULTS: Many gene knockouts invoked DEGs relating to matrix metalloproteinases and interferon-induced proteins. We have prioritized genes at four loci of interest to identify gene knockouts that may contribute to the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic networks of gene knockouts with similar transcriptomic profiles were identified, suggesting a synergistic function in trabecular meshwork cell physiology. TEK knockout caused significant upregulation of nuclear granularity on morphological analysis, while knockout of TRIOBP, TMCO1 and PLEKHA7 increased granularity and intensity of actin and the cell-membrane. CONCLUSION: High-throughput analysis of cellular structure and function through multiplex fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic perturbations at the single-cell resolution. This work provides a framework for investigating the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong genetic basis.


Assuntos
Glaucoma de Ângulo Aberto , Pressão Intraocular , Humanos , Pressão Intraocular/genética , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , Predisposição Genética para Doença , Tonometria Ocular , Proteína 2 Semelhante a Angiopoietina
6.
Cell ; 187(2): 273-275, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242084

RESUMO

Although the blinding eye disease glaucoma is more common in people of African ancestry, previous genetic studies predominantly involved European subjects. In this issue of Cell, O'Brien et al. report a genome-wide association study for glaucoma in individuals of African ancestry, showing overlap with European studies and refining an African polygenic risk score.


Assuntos
Estudo de Associação Genômica Ampla , Glaucoma , Humanos , Glaucoma/genética , População Negra/genética , Pesquisa , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
7.
Ophthalmol Retina ; 8(3): 298-306, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37743021

RESUMO

PURPOSE: To report baseline dimension of the autofluorescent (AF) ring in a large cohort of retinitis pigmentosa (RP) patients and to evaluate models of ring progression. DESIGN: Cohort study. PARTICIPANTS: Four hundred and forty-five eyes of 224 patients with clinical diagnosis of RP. METHODS: Autofluorescent rings from near-infrared AF (NIRAF) and short-wavelength AF (SWAF) imaging modalities in RP eyes were segmented with ring area and horizontal extent extracted from each image for cross-sectional and longitudinal analyses. In longitudinal analysis, for each eye, ring area, horizontal extent, and natural logarithm of the ring area were assessed as the best dependent variable for linear regression by evaluating R2 values. Linear mixed-effects modeling was utilized to account for intereye correlation. MAIN OUTCOME MEASURES: Autofluorescent ring size characteristics at baseline and ring progression rates. RESULTS: A total of 439 eyes had SWAF imaging at baseline with the AF ring observed in 206 (46.9%) eyes. Mean (95% confidence interval) of ring area and horizontal extent were 7.85 (6.60 to 9.11) mm2 and 3.35 (3.10 to 3.60) mm, respectively. In NIRAF, the mean ring area and horizontal extent were 7.74 (6.60 to 8.89) mm2 and 3.26 (3.02 to 3.50) mm, respectively in 251 out of 432 eyes. Longitudinal analysis showed mean progression rates of -0.57 mm2/year and -0.12 mm/year in SWAF using area and horizontal extent as the dependent variable, respectively. When ln(Area) was analyzed as the dependent variable, mean progression was -0.07 ln(mm2)/year, which equated to 6.80% decrease in ring area per year. Similar rates were found in NIRAF (area: -0.59 mm2/year, horizontal extent: -0.12 mm/year and ln(Area): -0.08 ln(mm2)/year, equated to 7.75% decrease in area per year). Analysis of R2 showed that the dependent variable ln(Area) provided the best linear model for ring progression in both imaging modalities, especially in eyes with large overall area change. CONCLUSIONS: Our data suggest that using an exponential model to estimate progression of the AF ring area in RP is more appropriate than the models assuming linear decrease. Hence, the progression estimates provided in this study should provide more accurate reference points in designing clinical trials in RP patients. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Retinose Pigmentar , Campos Visuais , Humanos , Estudos de Coortes , Estudos Transversais , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Acuidade Visual , Retinose Pigmentar/diagnóstico , Retina/diagnóstico por imagem
8.
Acta Ophthalmol ; 102(3): e245-e256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37694816

RESUMO

PURPOSE: The Myopia Outcome Study of Atropine in Children (MOSAIC) is an investigator-led, double-masked, randomized controlled trial investigating the efficacy and safety of 0.01% atropine eye drops for managing myopia progression in a predominantly White, European population. METHODS: Children aged 6-16 years with myopia were randomly allocated 2:1 to nightly 0.01% atropine or placebo eye drops in both eyes for 2 years. The primary outcome was cycloplegic spherical equivalent (SE) progression at 24 months. Secondary outcomes included axial length (AL) change, safety and acceptability. Linear mixed models with random intercepts were used for statistical analyses. RESULTS: Of 250 participants enrolled, 204 (81.6%) completed the 24-month visit (136 (81.4%) treatment, 68 (81.9%) placebo). Baseline characteristics, drop-out and adverse event rates were similar between treatment and control groups. At 24 months, SE change was not significantly different between 0.01% atropine and placebo groups (effect = 0.10 D, p = 0.07), but AL growth was lower in the 0.01% atropine group, compared to the placebo group (-0.07 mm, p = 0.007). Significant treatment effects on SE (0.14 D, p = 0.049) and AL (-0.11 mm, p = 0.002) were observed in children of White, but not non-White (SE = 0.05 D, p = 0.89; AL = 0.008 mm, p = 0.93), ethnicity at 24 months. A larger treatment effect was observed in subjects least affected by COVID-19 restrictions (SE difference = 0.37 D, p = 0.005; AL difference = -0.17 mm, p = 0.001). CONCLUSIONS: Atropine 0.01% was safe, well-tolerated and effective in slowing axial elongation in this European population. Treatment efficacy varied by ethnicity and eye colour, and potentially by degree of COVID-19 public health restriction exposure during trial participation.


Assuntos
COVID-19 , Miopia , Criança , Humanos , Atropina , Miopia/diagnóstico , Miopia/tratamento farmacológico , Miopia/epidemiologia , Refração Ocular , Resultado do Tratamento , Comprimento Axial do Olho , Soluções Oftálmicas , Progressão da Doença , COVID-19/epidemiologia
9.
Ophthalmology ; 131(1): 16-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37634759

RESUMO

PURPOSE: To identify age-related macular degeneration (AMD) risk loci and to establish a polygenic prediction model. DESIGN: Genome-wide association study (GWAS) and polygenic risk score (PRS) construction. PARTICIPANTS: We included 64 885 European patients with AMD and 568 740 control participants (with overlapped samples) in the UK Biobank, Genetic Epidemiology Research on Aging (GERA), International AMD Consortium, FinnGen, and published early AMD GWASs in meta-analyses, as well as 733 European patients with AMD and 20 487 control participants from the Canadian Longitudinal Study on Aging (CLSA) and non-Europeans from the UK Biobank and GERA for polygenic risk score validation. METHODS: A multitrait meta-analysis of GWASs comprised 64 885 patients with AMD and 568 740 control participants; the multitrait approach accounted for sample overlap. We constructed a PRS for AMD based on both previously reported as well as unreported AMD loci. We applied the PRS to nonoverlapping data from the CLSA. MAIN OUTCOME MEASURES: We identified several single nucleotide polymorphisms associated with AMD and established a PRS for AMD risk prediction. RESULTS: We identified 63 AMD risk loci alongside the well-established AMD loci CFH and ARMS2, including 9 loci that were not reported in previous GWASs, some of which previously were linked to other eye diseases such as glaucoma (e.g., HIC1). We applied our PRS to nonoverlapping data from the CLSA. A new PRS was constructed using the PRS method, PRS-CS, and significantly improved the prediction accuracy of AMD risk compared with PRSs from previously published datasets. We further showed that even people who carry all the well-known AMD risk alleles at CFH and ARMS2 vary considerably in their AMD risk (ranging from close to 0 in individuals with low PRS to > 50% in individuals with high PRS). Although our PRS was derived in individuals of European ancestry, the PRS shows potential for predicting risk in people of East Asian, South Asian, and Latino ancestry. CONCLUSIONS: Our findings improve the knowledge of the genetic architecture of AMD and help achieve better accuracy in AMD prediction. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Estudo de Associação Genômica Ampla , Degeneração Macular , Humanos , Proteínas/genética , Estudos Longitudinais , Fatores de Risco , Canadá/epidemiologia , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
11.
medRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37986775

RESUMO

This manuscript has been withdrawn by medRxiv following a formal request by the QIMR Berghofer Medical Research Institute Research Integrity Office owing to lack of author consent.

12.
Invest Ophthalmol Vis Sci ; 64(14): 28, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982764

RESUMO

Purpose: Changes in refractive error during young adulthood is common yet risk factors at this age are largely unexplored. This study explored risk factors for these changes, including gene-environmental interactions. Methods: Spherical equivalent refraction (SER) and axial length (AL) for 624 community-based adults were measured at 20 (baseline) and 28 years old. Participants were genotyped and their polygenic scores (PGS) for refractive error calculated. Self-reported screen time (computer, television, and mobile devices) from 20 to 28 years old were collected prospectively and longitudinal trajectories were generated. Past sun exposure was quantified using conjunctival ultraviolet autofluorescence (CUVAF) area. Results: Median change in SER and AL were -0.023 diopters (D)/year (interquartile range [IQR] = -0.062 to -0.008) and +0.01 mm/year (IQR = 0.000 to 0.026), respectively. Sex, baseline myopia, parental myopia, screen time, CUVAF, and PGS were significantly associated with myopic shift. Collectively, these factors accounted for approximately 20% of the variance in refractive error change, with screen time, CUVAF, and PGS each explaining approximately 1% of the variance. Four trajectories for total screen time were found: "consistently low" (n = 148), "consistently high" (n = 250), "consistently very high" (n = 76), and "increasing" (n = 150). Myopic shift was faster in those with "consistently high" or "consistently very high" screen time compared to "consistently-low" (P ≤ 0.031). For each z-score increase in PGS, changes in SER and AL increased by -0.005 D/year and 0.002 mm/year (P ≤ 0.045). Of the three types of screen time, only computer time was associated with myopic shift (P ≤ 0.040). There was no two- or three-way interaction effect between PGS, CUVAF, or screen time (P ≥ 0.26). Conclusions: Higher total or computer screen time, less sun exposure, and genetic predisposition are each independently associated with greater myopic shifts during young adulthood. Given that these factors explained only a small amount of the variance, there are likely other factors driving refractive error change during young adulthood.


Assuntos
Miopia , Erros de Refração , Adulto , Humanos , Adulto Jovem , Predisposição Genética para Doença , Tempo de Tela , Luz Solar/efeitos adversos , Erros de Refração/genética , Miopia/genética , Túnica Conjuntiva
13.
BMJ Open ; 13(8): e068811, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37536973

RESUMO

PURPOSE: Glaucoma, a major cause of irreversible blindness, is a highly heritable human disease. Currently, the majority of the risk genes for glaucoma are unknown. We established the Genetics of Glaucoma Study (GOGS) to identify disease genes and improve genetic prediction of glaucoma risk and response to treatment. PARTICIPANTS: More than 5700 participants with glaucoma or a family history of glaucoma were recruited through a media campaign and the Australian Government healthcare service provider, Services Australia, making GOGS one of the largest genetic studies of glaucoma globally. The mean age of the participants was 65.30±9.36 years, and 62% were female. Participants completed a questionnaire obtaining information about their glaucoma-related medical history such as family history, glaucoma status and subtypes, surgical procedures, and prescriptions. The questionnaire also obtained information about other eye and systemic diseases. Approximately 80% of the participants provided a DNA sample and ~70% consented to data linkage to their Australian Government Medicare and Pharmaceutical Benefits Scheme schedules. FINDINGS TO DATE: 4336 GOGS participants reported that an optometrist or ophthalmologist has diagnosed them with glaucoma and 3639 participants reported having a family history of glaucoma. The vast majority of the participants (N=4393) had used at least one glaucoma-related medication; latanoprost was the most commonly prescribed drug (54% of the participants who had a glaucoma prescription). A subset of the participants reported a surgical treatment for glaucoma including a laser surgery in 2008 participants and a non-laser operation in 803 participants. Several comorbid eye and systemic diseases were also observed; the most common reports were ocular hypertension (53% of the participants), cataract (48%), hypertension (40%), nearsightedness (31%), astigmatism (22%), farsightedness (16%), diabetes (12%), sleep apnoea (11%) and migraines (10%). FUTURE PLANS: GOGS will contribute to the global gene-mapping efforts as one of the largest genetic studies for glaucoma. We will also use GOGS to develop or validate genetic risk prediction models to stratify glaucoma risk, particularly in individuals with a family history of glaucoma, and to predict clinical outcomes (eg, which medication works better for an individual and whether glaucoma surgery is required). GOGS will also help us answer various research questions about genetic overlap and causal relationships between glaucoma and its comorbidities.


Assuntos
Glaucoma , Hipertensão Ocular , Idoso , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Anti-Hipertensivos/uso terapêutico , Austrália/epidemiologia , Programas Nacionais de Saúde , Glaucoma/genética , Glaucoma/diagnóstico , Hipertensão Ocular/tratamento farmacológico , Pressão Intraocular
14.
Transl Vis Sci Technol ; 12(8): 14, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594450

RESUMO

Purpose: Treatments are available to slow myopic axial elongation. Understanding normal axial length (AL) distributions will assist clinicians in choosing appropriate treatment for myopia. We report the distribution of AL in Australians of different age groups and refractive errors. Methods: Retrospectively collected spherical equivalent refraction (SER) and AL data of 5938 individuals aged 5 to 89 years from 8 Australian studies were included. Based on the SER, participants were classified as emmetropes, myopes, and hyperopes. Two regression model parameterizations (piece-wise and restricted cubic splines [RCS]) were applied to the cross-sectional data to analyze the association between age and AL. These results were compared with longitudinal data from the Raine Study where the AL was measured at age 20 (baseline) and 28 years. Results: A piece-wise regression model (with 1 knot) showed that myopes had a greater increase in AL before 18 years by 0.119 mm/year (P < 0.001) and after 18 years by 0.011 mm/year (P < 0.001) compared to emmetropes and hyperopes, with the RCS model (with 3 knots) showing similar results. The longitudinal data from the Raine Study revealed that, when compared to emmetropes, only myopes showed a significant change in the AL in young adulthood (by 0.016 mm/year, P < 0.001). Conclusions: The AL of myopic eyes increases more rapidly in childhood and slightly in early adulthood. Further studies of longitudinal changes in AL, particularly in childhood, are required to guide myopia interventions. Translational Relevance: The axial length of myopic eyes increases rapidly in childhood, and there is a minimal increase in the axial length in non-myopic eyes after 18 years of age.


Assuntos
Emetropia , Olho , Hiperopia , Miopia , Erros de Refração , Adolescente , Adulto , Humanos , Adulto Jovem , Austrália/epidemiologia , Estudos Transversais , Hiperopia/diagnóstico , Hiperopia/epidemiologia , Miopia/diagnóstico , Miopia/epidemiologia , Erros de Refração/epidemiologia , Estudos Retrospectivos , Pré-Escolar , Criança , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Tamanho do Órgão , Olho/crescimento & desenvolvimento , Olho/patologia
15.
Nat Genet ; 55(7): 1116-1125, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386247

RESUMO

Glaucoma, a leading cause of irreversible blindness, is a highly heritable human disease. Previous genome-wide association studies have identified over 100 loci for the most common form, primary open-angle glaucoma. Two key glaucoma-associated traits also show high heritability: intraocular pressure and optic nerve head excavation damage quantified as the vertical cup-to-disc ratio. Here, since much of glaucoma heritability remains unexplained, we conducted a large-scale multitrait genome-wide association study in participants of European ancestry combining primary open-angle glaucoma and its two associated traits (total sample size over 600,000) to substantially improve genetic discovery power (263 loci). We further increased our power by then employing a multiancestry approach, which increased the number of independent risk loci to 312, with the vast majority replicating in a large independent cohort from 23andMe, Inc. (total sample size over 2.8 million; 296 loci replicated at P < 0.05, 240 after Bonferroni correction). Leveraging multiomics datasets, we identified many potential druggable genes, including neuro-protection targets likely to act via the optic nerve, a key advance for glaucoma because all existing drugs only target intraocular pressure. We further used Mendelian randomization and genetic correlation-based approaches to identify novel links to other complex traits, including immune-related diseases such as multiple sclerosis and systemic lupus erythematosus.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Estudo de Associação Genômica Ampla , Glaucoma de Ângulo Aberto/genética , Glaucoma/genética , Pressão Intraocular/genética , Nervo Óptico , Polimorfismo de Nucleotídeo Único/genética , Predisposição Genética para Doença
16.
Nat Genet ; 55(7): 1149-1163, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386251

RESUMO

Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease.


Assuntos
Paralisia Facial , Animais , Camundongos , Paralisia Facial/genética , Paralisia Facial/congênito , Paralisia Facial/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Neurônios Motores/metabolismo , Neurogênese , Neurônios Eferentes
17.
Front Genet ; 14: 1113058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351342

RESUMO

Introduction: Long axial length (AL) is a risk factor for myopia. Although family studies indicate that AL has an important genetic component with heritability estimates up to 0.94, there have been few reports of AL-associated loci. Methods: Here, we conducted a multiethnic genome-wide association study (GWAS) of AL in 19,420 adults of European, Latino, Asian, and African ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort, with replication in a subset of the Consortium for Refractive Error and Myopia (CREAM) cohorts of European or Asian ancestry. We further examined the effect of the identified loci on the mean spherical equivalent (MSE) within the GERA cohort. We also performed genome-wide genetic correlation analyses to quantify the genetic overlap between AL and MSE or myopia risk in the GERA European ancestry sample. Results: Our multiethnic GWA analysis of AL identified a total of 16 genomic loci, of which 5 are novel. We found that all AL-associated loci were significantly associated with MSE after Bonferroni correction. We also found that AL was genetically correlated with MSE (rg = -0.83; SE, 0.04; p = 1.95 × 10-89) and myopia (rg = 0.80; SE, 0.05; p = 2.84 × 10-55). Finally, we estimated the array heritability for AL in the GERA European ancestry sample using LD score regression, and found an overall heritability estimate of 0.37 (s.e. = 0.04). Discussion: In this large and multiethnic study, we identified novel loci, associated with AL at a genome-wide significance level, increasing substantially our understanding of the etiology of AL variation. Our results also demonstrate an association between AL-associated loci and MSE and a shared genetic basis between AL and myopia risk.

18.
EBioMedicine ; 92: 104615, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37201334

RESUMO

BACKGROUND: Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by progressive degeneration of the optic nerve that leads to irreversible visual impairment. Multiple epidemiological studies suggest an association between POAG and major neurodegenerative disorders (Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and Parkinson's disease). However, the nature of the overlap between neurodegenerative disorders, brain morphology and glaucoma remains inconclusive. METHOD: In this study, we performed a comprehensive assessment of the genetic and causal relationship between POAG and neurodegenerative disorders, leveraging genome-wide association data from studies of magnetic resonance imaging of the brain, POAG, and four major neurodegenerative disorders. FINDINGS: This study found a genetic overlap and causal relationship between POAG and its related phenotypes (i.e., intraocular pressure and optic nerve morphology traits) and brain morphology in 19 regions. We also identified 11 loci with a significant local genetic correlation and a high probability of sharing the same causal variant between neurodegenerative disorders and POAG or its related phenotypes. Of interest, a region on chromosome 17 corresponding to MAPT, a well-known risk locus for Alzheimer's and Parkinson's disease, was shared between POAG, optic nerve degeneration traits, and Alzheimer's and Parkinson's diseases. Despite these local genetic overlaps, we did not identify strong evidence of a causal association between these neurodegenerative disorders and glaucoma. INTERPRETATION: Our findings indicate a distinctive and likely independent neurodegenerative process for POAG involving several brain regions although several POAG or optic nerve degeneration risk loci are shared with neurodegenerative disorders, consistent with a pleiotropic effect rather than a causal relationship between these traits. FUNDING: PG was supported by an NHMRC Investigator Grant (#1173390), SM by an NHMRC Senior Research Fellowship and an NHMRC Program Grant (APP1150144), DM by an NHMRC Fellowship, LP is funded by the NEIEY015473 and EY032559 grants, SS is supported by an NIH-Oxford Cambridge Fellowship and NIH T32 grant (GM136577), APK is supported by a UK Research and Innovation Future Leaders Fellowship, an Alcon Research Institute Young Investigator Award and a Lister Institute for Preventive Medicine Award.


Assuntos
Doença de Alzheimer , Glaucoma de Ângulo Aberto , Glaucoma , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/patologia , Estudo de Associação Genômica Ampla , Doença de Parkinson/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Glaucoma/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Degeneração Neural/genética , Degeneração Neural/patologia
20.
EBioMedicine ; 91: 104551, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37055258

RESUMO

BACKGROUND: High myopia (HM), defined as a spherical equivalent refractive error (SER) ≤ -6.00 diopters (D), is a leading cause of sight impairment, through myopic macular degeneration (MMD). We aimed to derive an improved polygenic score (PGS) for predicting children at risk of HM and to test if a PGS is predictive of MMD after accounting for SER. METHODS: The PGS was derived from genome-wide association studies in participants of UK Biobank, CREAM Consortium, and Genetic Epidemiology Research on Adult Health and Aging. MMD severity was quantified by a deep learning algorithm. Prediction of HM was quantified as the area under the receiver operating curve (AUROC). Prediction of severe MMD was assessed by logistic regression. FINDINGS: In independent samples of European, African, South Asian and East Asian ancestry, the PGS explained 19% (95% confidence interval 17-21%), 2% (1-3%), 8% (7-10%) and 6% (3-9%) of the variation in SER, respectively. The AUROC for HM in these samples was 0.78 (0.75-0.81), 0.58 (0.53-0.64), 0.71 (0.69-0.74) and 0.67 (0.62-0.72), respectively. The PGS was not associated with the risk of MMD after accounting for SER: OR = 1.07 (0.92-1.24). INTERPRETATION: Performance of the PGS approached the level required for clinical utility in Europeans but not in other ancestries. A PGS for refractive error was not predictive of MMD risk once SER was accounted for. FUNDING: Supported by the Welsh Government and Fight for Sight (24WG201).


Assuntos
Degeneração Macular , Miopia , Adulto , Criança , Humanos , Povo Asiático/genética , Etnicidade , Estudo de Associação Genômica Ampla , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Degeneração Macular/epidemiologia , Miopia/diagnóstico , Miopia/genética , População Europeia , População Africana , População do Sul da Ásia , População do Leste Asiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...