Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9775, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684693

RESUMO

This comprehensive study examines fossil remains from Niedzwiedzia Cave in the Eastern Sudetes, offering detailed insights into the palaeobiology and adversities encountered by the Pleistocene cave bear Ursus spelaeus ingressus. Emphasising habitual cave use for hibernation and a primarily herbivorous diet, the findings attribute mortality to resource scarcity during hibernation and habitat fragmentation amid climate shifts. Taphonomic analysis indicates that the cave was extensively used by successive generations of bears, virtually unexposed to the impact of predators. The study also reveals that alkaline conditions developed in the cave during the post-depositional taphonomic processes. Mortality patterns, notably among juveniles, imply dwindling resources, indicative of environmental instability. Skeletal examination reveals a high incidence of forelimb fractures, indicating risks during activities like digging or confrontations. Palaeopathological evidence unveils vulnerabilities to tuberculosis, abscesses, rickets, and injuries, elucidating mobility challenges. The cave's silts exhibit a high zinc concentration, potentially derived from successive bear generations consuming zinc-rich plants. This study illuminates the lives of late cave bears, elucidating unique environmental hurdles faced near their species' end.


Assuntos
Cavernas , Fósseis , Ursidae , Animais , Polônia , Ursidae/fisiologia , Paleopatologia , Ecossistema , Paleontologia
2.
Sci Rep ; 13(1): 15751, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735485

RESUMO

Targeting peptides or presequences are N-terminal extensions of proteins that encode information about their cellular localization. They include signal peptides (SP), which target proteins to the endoplasmic reticulum, and transit peptides (TP) directing proteins to the organelles of endosymbiotic origin: chloroplasts and mitochondria. TPs were hypothesized to have evolved from antimicrobial peptides (AMPs), which are responsible for the host defence against microorganisms, including bacteria, fungi and viruses. In this study, we performed comprehensive bioinformatic analyses of amino acid motifs of targeting peptides and AMPs using a curated set of experimentally verified proteins. We identified motifs frequently occurring in each type of presequence showing specific patterns associated with their amino acid composition, and investigated their position within the presequence. We also compared motif patterns among different taxonomic groups and identified taxon-specific features, providing some evolutionary insights. Considering the functional relevance and many practical applications of targeting peptides and AMPs, we believe that our analyses will prove useful for their design, and better understanding of protein import mechanism and presequence evolution.


Assuntos
Aminoácidos , Peptídeos Antimicrobianos , Sequência de Aminoácidos , Cloroplastos , Biologia Computacional
3.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445717

RESUMO

Lactoferrin, an iron-binding glycoprotein, plays a significant role in the innate immune system, with antibacterial, antivirial, antifungal, anticancer, antioxidant and immunomodulatory functions reported. It is worth emphasizing that not only the whole protein but also its derived fragments possess antimicrobial peptide (AMP) activity. Using AmpGram, a top-performing AMP classifier, we generated three novel human lactoferrin (hLF) fragments: hLF 397-412, hLF 448-464 and hLF 668-683, predicted with high probability as AMPs. For comparative studies, we included hLF 1-11, previously confirmed to kill some bacteria. With the four peptides, we treated three Gram-negative and three Gram-positive bacterial strains. Our results indicate that none of the three new lactoferrin fragments have antimicrobial properties for the bacteria tested, but hLF 1-11 was lethal against Pseudomonas aeruginosa. The addition of serine protease inhibitors with the hLF fragments did not enhance their activity, except for hLF 1-11 against P. aeruginosa, which MIC dropped from 128 to 64 µg/mL. Furthermore, we investigated the impact of EDTA with/without serine protease inhibitors and the hLF peptides on selected bacteria. We stress the importance of reporting non-AMP sequences for the development of next-generation AMP prediction models, which suffer from the lack of experimentally validated negative dataset for training and benchmarking.


Assuntos
Lactoferrina , Peptídeos , Humanos , Lactoferrina/metabolismo , Peptídeos/farmacologia , Antifúngicos , Antibacterianos/farmacologia
4.
Sci Rep ; 13(1): 8365, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225726

RESUMO

Due to their complex history, plastids possess proteins encoded in the nuclear and plastid genome. Moreover, these proteins localize to various subplastid compartments. Since protein localization is associated with its function, prediction of subplastid localization is one of the most important steps in plastid protein annotation, providing insight into their potential function. Therefore, we create a novel manually curated data set of plastid proteins and build an ensemble model for prediction of protein subplastid localization. Moreover, we discuss problems associated with the task, e.g. data set sizes and homology reduction. PlastoGram classifies proteins as nuclear- or plastid-encoded and predicts their localization considering: envelope, stroma, thylakoid membrane or thylakoid lumen; for the latter, the import pathway is also predicted. We also provide an additional function to differentiate nuclear-encoded inner and outer membrane proteins. PlastoGram is available as a web server at https://biogenies.info/PlastoGram and as an R package at https://github.com/BioGenies/PlastoGram . The code used for described analyses is available at https://github.com/BioGenies/PlastoGram-analysis .


Assuntos
Proteínas de Cloroplastos , Genomas de Plastídeos , Proteínas de Membrana , Anotação de Sequência Molecular , Tilacoides
5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674703

RESUMO

Synonymous codon usage can be influenced by mutations and/or selection, e.g., for speed of protein translation and correct folding. However, this codon bias can also be affected by a general selection at the amino acid level due to differences in the acceptance of the loss and generation of these codons. To assess the importance of this effect, we constructed a mutation-selection model model, in which we generated almost 90,000 stationary nucleotide distributions produced by mutational processes and applied a selection based on differences in physicochemical properties of amino acids. Under these conditions, we calculated the usage of fourfold degenerated (4FD) codons and compared it with the usage characteristic of the pure mutations. We considered both the standard genetic code (SGC) and alternative genetic codes (AGCs). The analyses showed that a majority of AGCs produced a greater 4FD codon bias than the SGC. The mutations producing more thymine or adenine than guanine and cytosine increased the differences in usage. On the other hand, the mutational pressures generating a lot of cytosine or guanine with a low content of adenine and thymine decreased this bias because the nucleotide content of most 4FD codons stayed in the compositional equilibrium with these pressures. The comparison of the theoretical results with those for real protein coding sequences showed that the influence of selection at the amino acid level on the synonymous codon usage cannot be neglected. The analyses indicate that the effect of amino acid selection cannot be disregarded and that it can interfere with other selection factors influencing codon usage, especially in AT-rich genomes, in which AGCs are usually used.


Assuntos
Aminoácidos , Uso do Códon , Aminoácidos/genética , Timina , Código Genético , Códon/genética , Nucleotídeos/genética , Citosina , Guanina , Adenina , Seleção Genética , Evolução Molecular
6.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614244

RESUMO

Amyloids and antimicrobial peptides (AMPs) have many similarities, e.g., both kill microorganisms by destroying their membranes, form aggregates, and modulate the innate immune system. Given these similarities and the fact that the antimicrobial properties of short amyloids have not yet been investigated, we chose a group of potentially antimicrobial short amyloids to verify their impact on bacterial and eukaryotic cells. We used AmpGram, a best-performing AMP classification model, and selected ten amyloids with the highest AMP probability for our experimental research. Our results indicate that four tested amyloids: VQIVCK, VCIVYK, KCWCFT, and GGYLLG, formed aggregates under the conditions routinely used to evaluate peptide antimicrobial properties, but none of the tested amyloids exhibited antimicrobial or cytotoxic properties. Accordingly, they should be included in the negative datasets to train the next-generation AMP prediction models, based on experimentally confirmed AMP and non-AMP sequences. In the article, we also emphasize the importance of reporting non-AMPs, given that only a handful of such sequences have been officially confirmed.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bactérias
7.
Sci Rep ; 12(1): 16381, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180508

RESUMO

Mitochondrial DNA (mtDNA) lineages are recognized as important components of intra- and interspecific biodiversity, and allow to reveal colonization routes and phylogeographic structure of many taxa. Among these is the genus Cervus that is widely distributed across the Holarctic. We obtained sequences of complete mitochondrial genomes from 13 Cervus taxa and included them in global phylogenetic analyses of 71 Cervinae mitogenomes. The well-resolved phylogenetic trees confirmed Cervus to be monophyletic. Molecular dating based on several fossil calibration points revealed that ca. 2.6 Mya two main mitochondrial lineages of Cervus separated in Central Asia, the Western (including C. hanglu and C. elaphus) and the Eastern (comprising C. albirostris, C. canadensis and C. nippon). We also observed convergent changes in the composition of some mitochondrial genes in C. hanglu of the Western lineage and representatives of the Eastern lineage. Several subspecies of C. nippon and C. hanglu have accumulated a large portion of deleterious substitutions in their mitochondrial protein-coding genes, probably due to drift in the wake of decreasing population size. In contrast to previous studies, we found that the relic haplogroup B of C. elaphus was sister to all other red deer lineages and that the Middle-Eastern haplogroup E shared a common ancestor with the Balkan haplogroup C. Comparison of the mtDNA phylogenetic tree with a published nuclear genome tree may imply ancient introgressions of mtDNA between different Cervus species as well as from the common ancestor of South Asian deer, Rusa timorensis and R. unicolor, to the Cervus clade.


Assuntos
Cervos , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Cervos/genética , Genoma Mitocondrial/genética , Proteínas Mitocondriais/genética , Filogenia , Análise de Sequência de DNA
8.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35988923

RESUMO

Antimicrobial peptides (AMPs) are a heterogeneous group of short polypeptides that target not only microorganisms but also viruses and cancer cells. Due to their lower selection for resistance compared with traditional antibiotics, AMPs have been attracting the ever-growing attention from researchers, including bioinformaticians. Machine learning represents the most cost-effective method for novel AMP discovery and consequently many computational tools for AMP prediction have been recently developed. In this article, we investigate the impact of negative data sampling on model performance and benchmarking. We generated 660 predictive models using 12 machine learning architectures, a single positive data set and 11 negative data sampling methods; the architectures and methods were defined on the basis of published AMP prediction software. Our results clearly indicate that similar training and benchmark data set, i.e. produced by the same or a similar negative data sampling method, positively affect model performance. Consequently, all the benchmark analyses that have been performed for AMP prediction models are significantly biased and, moreover, we do not know which model is the most accurate. To provide researchers with reliable information about the performance of AMP predictors, we also created a web server AMPBenchmark for fair model benchmarking. AMPBenchmark is available at http://BioGenies.info/AMPBenchmark.


Assuntos
Peptídeos Antimicrobianos , Benchmarking , Antibacterianos , Peptídeos/química
9.
Sci Rep ; 12(1): 12357, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853920

RESUMO

Organisms with limited dispersal capabilities should show phenotypic plasticity in situ to keep pace with environmental changes. Therefore, to study the influence of environmental variation on the phenotypic diversity, we chose land snails, Trochulus hispidus and T. sericeus, characterized by high population variability. We performed long-term field studies as well as laboratory and common garden experiments, which revealed that temporal environmental changes generate visible variation in shell size and shape of these snails. Many shell measurements of T. hispidus varied significantly with temperature and humidity in individual years. According to this, the first generation of T. hispidus, bred in controlled laboratory conditions, became significantly different in higher spire and narrower umbilicus from its wild parents. Interestingly, offspring produced by this generation and transplanted to wild conditions returned to the 'wild' flat and wide-umbilicated shell shape. Moreover, initially different species T. hispidus and T. sericeus transferred into common environment conditions revealed rapid and convergent shell modifications within one generation. Such morphological flexibility and high genetic variation can be evolutionarily favored, when the environment is heterogeneous in time. The impact of climate change on the shell morphometry can lead to incorrect taxonomic classification or delimitation of artificial taxa in land snails. These findings have also important implications in the context of changing climate and environment.


Assuntos
Exoesqueleto , Melhoramento Vegetal , Adaptação Fisiológica , Exoesqueleto/anatomia & histologia , Animais , Umidade , Caramujos/anatomia & histologia , Caramujos/genética
10.
J Math Biol ; 85(1): 9, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838803

RESUMO

The standard genetic code (SGC) is the set of rules by which genetic information is translated into proteins, from codons, i.e. triplets of nucleotides, to amino acids. The questions about the origin and the main factor responsible for the present structure of the code are still under a hot debate. Various methodologies have been used to study the features of the code and assess the level of its potential optimality. Here, we introduced a new general approach to evaluate the quality of the genetic code structure. This methodology comes from graph theory and allows us to describe new properties of the genetic code in terms of conductance. This parameter measures the robustness of codon groups against the potential changes in translation of the protein-coding sequences generated by single nucleotide substitutions. We described the genetic code as a partition of an undirected and unweighted graph, which makes the model general and universal. Using this approach, we showed that the structure of the genetic code is a solution to the graph clustering problem. We presented and discussed the structure of the codes that are optimal according to the conductance. Despite the fact that the standard genetic code is far from being optimal according to the conductance, its structure is characterised by many codon groups reaching the minimum conductance for their size. The SGC represents most likely a local minimum in terms of errors occurring in protein-coding sequences and their translation.


Assuntos
Evolução Molecular , Código Genético , Aminoácidos/genética , Análise por Conglomerados , Códon/genética , Modelos Genéticos
11.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163612

RESUMO

The standard genetic code (SGC) is a set of rules according to which 64 codons are assigned to 20 canonical amino acids and stop coding signal. As a consequence, the SGC is redundant because there is a greater number of codons than the number of encoded labels. This redundancy implies the existence of codons that encode the same genetic information. The size and organization of such synonymous codon blocks are important characteristics of the SGC structure whose evolution is still unclear. Therefore, we studied possible evolutionary mechanisms of the codon block structure. We conducted computer simulations assuming that coding systems at early stages of the SGC evolution were sets of ambiguous codon assignments with high entropy. We included three types of reading systems characterized by different inaccuracy and pattern of codon recognition. In contrast to the previous study, we allowed for evolution of the reading systems and their competition. The simulations performed under minimization of translational errors and reduction of coding ambiguity produced the coding system resistant to these errors. The reading system similar to that present in the SGC dominated the others very quickly. The survived system was also characterized by low entropy and possessed properties similar to that in the SGC. Our simulation show that the unambiguous SGC could emerged from a code with a lower level of ambiguity and the number of tRNAs increased during the evolution.


Assuntos
Simulação por Computador , Evolução Molecular , Código Genético , Modelos Genéticos , Entropia
12.
Biosystems ; 210: 104528, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34492316

RESUMO

It is assumed that at the early stage of cell evolution its translation machinery was characterized by high noise, i.e. ambiguous assignment of codons to amino acids in the genetic code, which initially encoded only few amino acids. Next, during its evolution new amino acids were added to this code. Taking into account this facts, we investigated theoretical models of genetic code's structure, which evolved from a set of ambiguous codons assignments into a coding system with a low level of uncertainty. We considered three types of translational inaccuracies assuming a different number of fixed codon positions. We applied a modified version of evolutionary algorithm for finding the genetic codes that the most effectively reduced the initial uncertainty in the assignment of codons to encoded labels, i.e. amino acids and a stop translation signal. We examined codes with the number of labels from four to 22. Our results indicated that the quality of genetic code structure is strongly dependent on the number of encoded labels as well as the type of translational mechanism. The more strict assignments of codon to the labels was preferred by the codes encoding more number of labels. The results showed that a smaller degeneracy of codes evolved from a more tolerant coding with the stepwise addition of coded amino acids to the genetic code. The distribution of codon groups in the standard genetic code corresponds well to the translation model assuming two fixed codon positions, whereas the six-codon groups can be relics form previous stages of evolution when the code characterized by a greater uncertainty.


Assuntos
Aminoácidos/genética , Códon/genética , Evolução Molecular , Código Genético/genética , Modelos Genéticos , Animais , Humanos
13.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432018

RESUMO

The rearrangement of 37 genes with one control region, firstly identified in Gallus gallus mitogenome, is believed to be ancestral for all Aves. However, mitogenomic sequences obtained in recent years revealed that many avian mitogenomes contain duplicated regions that were omitted in previous genomic versions. Their evolution and mechanism of duplication are still poorly understood. The order of Accipitriformes is especially interesting in this context because its representatives contain a duplicated control region in various stages of degeneration. Therefore, we applied an appropriate PCR strategy to look for duplications within the mitogenomes of the early diverged species Sagittarius serpentarius and Cathartiformes, which is a sister order to Accipitriformes. The analyses revealed the same duplicated gene order in all examined taxa and the common ancestor of these groups. The duplicated regions were subjected to gradual degeneration and homogenization during concerted evolution. The latter process occurred recently in the species of Cathartiformes as well as in the early diverged lineages of Accipitriformes, that is, Sagittarius serpentarius and Pandion haliaetus. However, in other lineages, that is, Pernis ptilorhynchus, as well as representatives of Aegypiinae, Aquilinae, and five related subfamilies of Accipitriformes (Accipitrinae, Circinae, Buteoninae, Haliaeetinae, and Milvinae), the duplications were evolving independently for at least 14-47 Myr. Different portions of control regions in Cathartiformes showed conflicting phylogenetic signals indicating that some sections of these regions were homogenized at a frequency higher than the rate of speciation, whereas others have still evolved separately.


Assuntos
Genoma Mitocondrial , Animais , Aves/genética , Evolução Molecular , Ordem dos Genes , Filogenia
14.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915818

RESUMO

The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host's innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.


Assuntos
Infecções/imunologia , Neuropeptídeos/imunologia , Animais , Humanos , Infecções/microbiologia , Infecções/terapia , Terapia de Alvo Molecular , Virulência
15.
Sci Rep ; 11(1): 8934, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903613

RESUMO

Several disorders are related to amyloid aggregation of proteins, for example Alzheimer's or Parkinson's diseases. Amyloid proteins form fibrils of aggregated beta structures. This is preceded by formation of oligomers-the most cytotoxic species. Determining amyloidogenicity is tedious and costly. The most reliable identification of amyloids is obtained with high resolution microscopies, such as electron microscopy or atomic force microscopy (AFM). More frequently, less expensive and faster methods are used, especially infrared (IR) spectroscopy or Thioflavin T staining. Different experimental methods are not always concurrent, especially when amyloid peptides do not readily form fibrils but oligomers. This may lead to peptide misclassification and mislabeling. Several bioinformatics methods have been proposed for in-silico identification of amyloids, many of them based on machine learning. The effectiveness of these methods heavily depends on accurate annotation of the reference training data obtained from in-vitro experiments. We study how robust are bioinformatics methods to weak supervision, encountering imperfect training data. AmyloGram and three other amyloid predictors were applied. The results proved that a certain degree of misannotation in the reference data can be eliminated by the bioinformatics tools, even if they belonged to their training set. The computational results are supported by new experiments with IR and AFM methods.


Assuntos
Amiloide , Biologia Computacional , Simulação por Computador , Peptídeos , Agregados Proteicos/genética , Amiloide/química , Amiloide/genética , Humanos , Microscopia de Força Atômica , Peptídeos/química , Peptídeos/genética , Espectrofotometria Infravermelho
16.
Genetics ; 218(1)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33711098

RESUMO

Reprogramming of the standard genetic code to include non-canonical amino acids (ncAAs) opens new prospects for medicine, industry, and biotechnology. There are several methods of code engineering, which allow us for storing new genetic information in DNA sequences and producing proteins with new properties. Here, we provided a theoretical background for the optimal genetic code expansion, which may find application in the experimental design of the genetic code. We assumed that the expanded genetic code includes both canonical and non-canonical information stored in 64 classical codons. What is more, the new coding system is robust to point mutations and minimizes the possibility of reversion from the new to old information. In order to find such codes, we applied graph theory to analyze the properties of optimal codon sets. We presented the formal procedure in finding the optimal codes with various number of vacant codons that could be assigned to new amino acids. Finally, we discussed the optimal number of the newly incorporated ncAAs and also the optimal size of codon groups that can be assigned to ncAAs.


Assuntos
Códon , Código Genético , Engenharia de Proteínas/métodos , Aminoácidos/genética , Modelos Genéticos , Biossíntese de Proteínas , Proteínas/genética
17.
Sci Rep ; 11(1): 3329, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558623

RESUMO

We have recently found that ß-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Proteínas de Neoplasias/biossíntese , Retroelementos , Linhagem Celular Tumoral , Adesões Focais/genética , Adesões Focais/patologia , Humanos , Melanoma/genética , Melanoma/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/genética
18.
BMC Genomics ; 21(1): 874, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287726

RESUMO

BACKGROUND: Bird mitogenomes differ from other vertebrates in gene rearrangement. The most common avian gene order, identified first in Gallus gallus, is considered ancestral for all Aves. However, other rearrangements including a duplicated control region and neighboring genes have been reported in many representatives of avian orders. The repeated regions can be easily overlooked due to inappropriate DNA amplification or genome sequencing. This raises a question about the actual prevalence of mitogenomic duplications and the validity of the current view on the avian mitogenome evolution. In this context, Palaeognathae is especially interesting because is sister to all other living birds, i.e. Neognathae. So far, a unique duplicated region has been found in one palaeognath mitogenome, that of Eudromia elegans. RESULTS: Therefore, we applied an appropriate PCR strategy to look for omitted duplications in other palaeognaths. The analyses revealed the duplicated control regions with adjacent genes in Crypturellus, Rhea and Struthio as well as ND6 pseudogene in three moas. The copies are very similar and were subjected to concerted evolution. Mapping the presence and absence of duplication onto the Palaeognathae phylogeny indicates that the duplication was an ancestral state for this avian group. This feature was inherited by early diverged lineages and lost two times in others. Comparison of incongruent phylogenetic trees based on mitochondrial and nuclear sequences showed that two variants of mitogenomes could exist in the evolution of palaeognaths. Data collected for other avian mitogenomes revealed that the last common ancestor of all birds and early diverging lineages of Neoaves could also possess the mitogenomic duplication. CONCLUSIONS: The duplicated control regions with adjacent genes are more common in avian mitochondrial genomes than it was previously thought. These two regions could increase effectiveness of replication and transcription as well as the number of replicating mitogenomes per organelle. In consequence, energy production by mitochondria may be also more efficient. However, further physiological and molecular analyses are necessary to assess the potential selective advantages of the mitogenome duplications.


Assuntos
Genoma Mitocondrial , Paleógnatas , Animais , Aves/genética , Evolução Molecular , Rearranjo Gênico , Filogenia
19.
Results Probl Cell Differ ; 69: 353-386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33263879

RESUMO

Paulinella photosynthetic species are unicellular, silica shell-forming amoebas classified into the supergroup Rhizaria. They crawl at the bottom of freshwater and brackish environments with the help of filose pseudopodia. These protists have drawn the attention of the scientific community because of two photosynthetic bodies, called chromatophores, that fill up their cells permitting fully photoautotrophic existence. Paulinella chromatophores, similarly to primary plastids of the Archaeplastida supergroup (including glaucophytes, red algae as well as green algae and land plants), evolved from free-living cyanobacteria in the process of endosymbiosis. Interestingly, these both cyanobacterial acquisitions occurred independently, thereby undermining the paradigm of the rarity of endosymbiotic events. Chromatophores were derived from α-cyanobacteria relatively recently 60-140 million years ago, whereas primary plastids originated from ß-cyanobacteria more than 1.5 billion years ago. Since their acquisition, chromatophore genomes have undergone substantial reduction but not to the extent of primary plastid genomes. Consequently, they have also developed mechanisms for transport of metabolites and nuclear-encoded proteins along with appropriate targeting signals. Therefore, chromatophores of Paulinella photosynthetic species, similarly to primary plastids, are true cellular organelles. They not only show that endosymbiotic events might not be so rare but also make a perfect model for studying the process of organellogenesis. In this chapter, we summarize the current knowledge and retrace the fascinating adventure of Paulinella species on their way to become photoautotrophic organisms.


Assuntos
Amoeba , Evolução Biológica , Cercozoários , Cromatóforos/microbiologia , Fotossíntese , Filogenia , Simbiose
20.
Mol Phylogenet Evol ; 148: 106808, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243996

RESUMO

Although previous phylogenetic analyses suggested that the araphid diatom family Plagiogrammaceae is monophyletic, there is still not a clear understanding of relationships among the genera, and the taxonomy of several genera--Dimeregramma and Plagiogramma--remains questionable in light of paraphyly for both genera using molecular and morphological data. We have expanded the available DNA for molecular work for dozens of plagiogrammacean clones and analyzed 29 morphological characters from plagiogrammarian taxa and closely related genera, to increase understanding of the evolutionary history and systematics of the family and re-evaluate the current taxonomical classification of plagiogrammacean genera. The addition of more taxa and more data confirm the results from previous molecular phylogenies: most plagiogrammacean genera are monophyletic, except for Dimeregramma and Plagiogramma. Interestingly, the morphological analysis resolves only Talaroneis and Glyphodesmis as monophyletic. Given these results, we feel there is limited support for retaining Dimeregramma and Plagiogramma as distinct genera, and formally propose amending Plagiogramma and transferring six Dimeregramma species. As the Plagiogrammaceae is also one of the first-diverging clades of pennate diatoms, we also used these molecular data to estimate the age of the family, based on multiple calibration points derived from fossil taxa within or close to the Plagiogrammaceae. The results indicated that the Plagiogrammaceae evolved more than 114 million year ago and its diversification appears to correspond to a time of climate cooling. Additionally, we described a new monotypic genus (Coccinelloidea) with one new species C. gracilis, and five new species within established genera, e.g. Plagiogramma marginalis, Plagiogramma harenae, Plagiogramma porcipellis, Neofragilaria montgomeryii and Psammogramma anacarae.


Assuntos
Diatomáceas/classificação , Diatomáceas/genética , Filogenia , Animais , Teorema de Bayes , Mudança Climática , Diatomáceas/citologia , Diatomáceas/ultraestrutura , Fósseis , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...