Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PLoS Negl Trop Dis ; 18(5): e0011516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701067

RESUMO

BACKGROUND: Sleeping sickness caused by Trypanosoma brucei rhodesiense is a fatal disease and endemic in Southern and Eastern Africa. There is an urgent need to develop novel diagnostic and control tools to achieve elimination of rhodesiense sleeping sickness which might be achieved through a better understanding of trypanosome gene expression and genetics using endemic isolates. Here, we describe transcriptome profiles and population structure of endemic T. b. rhodesiense isolates in human blood in Malawi. METHODOLOGY: Blood samples of r-HAT cases from Nkhotakota and Rumphi foci were collected in PaxGene tubes for RNA extraction before initiation of r-HAT treatment. 100 million reads were obtained per sample, reads were initially mapped to the human genome reference GRCh38 using HiSat2 and then the unmapped reads were mapped against Trypanosoma brucei reference transcriptome (TriTrypDB54_TbruceiTREU927) using HiSat2. Differential gene expression analysis was done using the DeSeq2 package in R. SNP calling from reads that were mapped to the T. brucei genome was done using GATK in order to identify T.b. rhodesiense population structure. RESULTS: 24 samples were collected from r-HAT cases of which 8 were from Rumphi and 16 from Nkhotakota foci. The isolates from Nkhotakota were enriched with transcripts for cell cycle arrest and stumpy form markers, whereas isolates in Rumphi focus were enriched with transcripts for folate biosynthesis and antigenic variation pathways. These parasite focus-specific transcriptome profiles are consistent with the more virulent disease observed in Rumphi and a less symptomatic disease in Nkhotakota associated with the non-dividing stumpy form. Interestingly, the Malawi T.b. rhodesiense isolates expressed genes enriched for reduced cell proliferation compared to the Uganda T.b. rhodesiense isolates. PCA analysis using SNPs called from the RNAseq data showed that T. b. rhodesiense parasites from Nkhotakota are genetically distinct from those collected in Rumphi. CONCLUSION: Our results suggest that the differences in disease presentation in the two foci is mainly driven by genetic differences in the parasites in the two major endemic foci of Rumphi and Nkhotakota rather than differences in the environment or host response.


Assuntos
Transcriptoma , Trypanosoma brucei rhodesiense , Tripanossomíase Africana , Malaui , Humanos , Trypanosoma brucei rhodesiense/genética , Tripanossomíase Africana/parasitologia , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Masculino
2.
Parasit Vectors ; 17(1): 179, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581062

RESUMO

ABSTRACT: BACKGROUND: Intestinal schistosomiasis remains a worrying health problem, particularly in western Côte d'Ivoire, despite control efforts. It is therefore necessary to understand all the factors involved in the development of the disease, including biotic and abiotic factors. The aim of this study was to examine the factors that could support the maintenance of the intermediate host and its vectorial capacity in western Côte d'Ivoire. METHODS: Data on river physicochemical, microbiological, and climatic parameters, the presence or absence of snails with Schistosoma mansoni, and human infections were collected between January 2020 and February 2021. Spearman rank correlation tests, Mann-Whitney, analysis of variance (ANOVA), and an appropriate model selection procedure were used to analyze the data. RESULTS: The overall prevalence of infected snails was 56.05%, with infection reaching 100% in some collection sites and localities. Of 26 sites examined, 25 contained thermophilic coliforms and 22 contained Escherichia coli. Biomphalaria pfeifferi was observed in environments with lower land surface temperature (LST) and higher relative air humidity (RAH), and B. pfeifferi infection predominated in more acidic environments. Thermal coliforms and E. coli preferred higher pH levels. Lower maximum LST (LST_Max) and higher RAH and minimum LST (LST_Min) were favorable to E. coli, and lower LST_Max favored coliforms. The presence of B. pfeifferi was positively influenced by water temperature (T °C), LST_Min, RAH, and precipitation (Pp) (P < 0.05) and negatively influenced by pH, total dissolved solids (TDS), electrical conductivity (EC), LST_Max, and mean land surface temperature (LST). The parameters pH, TDS, EC, LST_Min, LST, and Pp had a positive impact on snail infection, while LST_Max had a negative impact on infection. Only pH had a positive effect on coliform and E. coli abundance. Of the 701 people examined for human schistosomiasis, 73.13% were positive for the point-of-care circulating cathodic antigen (POC-CCA) test and 12.01% for the Kato-Katz (KK) test. A positive correlation was established between human infections and the abundance of Biomphalaria (r2 = 0.879, P = 0.04959). CONCLUSIONS: The results obtained reflect the environmental conditions that are conducive to the maintenance of S. mansoni infection in this part of the country. To combat this infection as effectively as possible, it will be necessary not only to redouble efforts but also to prioritize control according to the level of endemicity at the village level.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni , Côte d'Ivoire/epidemiologia , Escherichia coli , Esquistossomose mansoni/epidemiologia
3.
Sci Rep ; 14(1): 8348, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594373

RESUMO

Single molecule fluorescence in situ hybridisation (smFISH) has become a valuable tool to investigate the mRNA expression of single cells. However, it requires a considerable amount of programming expertise to use currently available open-source analytical software packages to extract and analyse quantitative data about transcript expression. Here, we present FISHtoFigure, a new software tool developed specifically for the analysis of mRNA abundance and co-expression in QuPath-quantified, multi-labelled smFISH data. FISHtoFigure facilitates the automated spatial analysis of transcripts of interest, allowing users to analyse populations of cells positive for specific combinations of mRNA targets without the need for computational image analysis expertise. As a proof of concept and to demonstrate the capabilities of this new research tool, we have validated FISHtoFigure in multiple biological systems. We used FISHtoFigure to identify an upregulation in the expression of Cd4 by T-cells in the spleens of mice infected with influenza A virus, before analysing more complex data showing crosstalk between microglia and regulatory B-cells in the brains of mice infected with Trypanosoma brucei brucei. These analyses demonstrate the ease of analysing cell expression profiles using FISHtoFigure and the value of this new tool in the field of smFISH data analysis.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Animais , Camundongos , RNA Mensageiro/metabolismo , Hibridização in Situ Fluorescente/métodos , Regulação para Cima
4.
EBioMedicine ; 101: 105000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360481

RESUMO

BACKGROUND: APOL1 variants G1 and G2 are common in populations with recent African ancestry. They are associated with protection from African sleeping sickness, however homozygosity or compound heterozygosity for these variants is associated with chronic kidney disease (CKD) and related conditions. What is not clear is the extent of associations with non-kidney-related disorders, and whether there are clusters of diseases associated with individual APOL1 genotypes. METHODS: Using a cohort of 7462 UK Biobank participants with recent African ancestry, we conducted a phenome-wide association study investigating associations between individual APOL1 genotypes and conditions identified by the International Classification of Disease phenotypes. FINDINGS: We identified 27 potential associations between individual APOL1 genotypes and a diverse range of conditions. G1/G2 compound heterozygotes were specifically associated with 26 of these conditions (all deleteriously), with an over-representation of infectious diseases (including hospitalisation and death resulting from COVID-19). The analysis also exposed complexities in the relationship between APOL1 and CKD that are not evident when risk variants are grouped together: G1 homozygosity, G2 homozygosity, and G1/G2 compound heterozygosity were each shown to be associated with distinct CKD phenotypes. The multi-locus nature of the G1/G2 genotype means that its associations would go undetected in a standard genome-wide association study. INTERPRETATION: Our findings have implications for understanding health risks and better-targeted detection, intervention, and therapeutic strategies, particularly in populations where APOL1 G1 and G2 are common such as in sub-Saharan Africa and its diaspora. FUNDING: This study was funded by the Wellcome Trust (209511/Z/17/Z) and H3Africa (H3A/18/004).


Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Insuficiência Renal Crônica/genética , Apolipoproteínas/genética , Fatores de Risco
6.
PLoS Negl Trop Dis ; 17(12): e0011803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38055777

RESUMO

T. b. rhodesiense is the causative agent of Rhodesian human African trypanosomiasis (r-HAT) in Malawi. Clinical presentation of r-HAT in Malawi varies between foci and differs from East African HAT clinical phenotypes. The purpose of this study was to gain more insights into the transcriptomic profiles of patients with early stage 1 and late stage 2 HAT disease in Malawi. Whole blood from individuals infected with T. b. rhodesiense was used for RNA-Seq. Control samples were from healthy trypanosome negative individuals matched on sex, age range, and disease foci. Illumina sequence FASTQ reads were aligned to the GRCh38 release 84 human genome sequence using HiSat2 and differential analysis was done in R Studio using the DESeq2 package. XGR, ExpressAnalyst and InnateDB algorithms were used for functional annotation and gene enrichment analysis of significant differentially expressed genes. RNA-seq was done on 23 r-HAT case samples and 28 healthy controls with 7 controls excluded for downstream analysis as outliers. A total of 4519 genes were significant differentially expressed (p adjusted <0.05) in individuals with early stage 1 r-HAT disease (n = 12) and 1824 genes in individuals with late stage 2 r-HAT disease (n = 11) compared to controls. Enrichment of innate immune response genes through neutrophil activation was identified in individuals with both early and late stages of the disease. Additionally, lipid metabolism genes were enriched in late stage 2 disease. We further identified uniquely upregulated genes (log2 Fold Change 1.4-2.0) in stage 1 (ZNF354C) and stage 2 (TCN1 and MAGI3) blood. Our data add to the current understanding of the human transcriptome profiles during T. b. rhodesiense infection. We further identified biological pathways and transcripts enriched than were enriched during stage 1 and stage 2 r-HAT. Lastly, we have identified transcripts which should be explored in future research whether they have potential of being used in combination with other markers for staging or r-HAT.


Assuntos
Transcriptoma , Tripanossomíase Africana , Animais , Humanos , Trypanosoma brucei rhodesiense , Malaui , Fenótipo , Proteínas Repressoras
7.
PLoS Pathog ; 19(12): e1011220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127941

RESUMO

In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites' development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Comunicação Celular , Trypanosoma brucei brucei/metabolismo , Mamíferos , Flagelos/metabolismo , Tripanossomíase Africana/parasitologia
8.
PLoS Biol ; 21(11): e3002389, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983289

RESUMO

The meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection. Here, by combining single-cell transcriptomics and mass cytometry by time-of-flight (CyTOF) with in vivo interventions, we found that chronic T. brucei infection triggers the development of ectopic lymphoid aggregates (ELAs) in the murine meninges. These infection-induced ELAs were defined by the presence of ER-TR7+ fibroblastic reticular cells, CD21/35+ follicular dendritic cells (FDCs), CXCR5+ PD1+ T follicular helper-like phenotype, GL7+ CD95+ GC-like B cells, and plasmablasts/plasma cells. Furthermore, the B cells found in the infected meninges produced high-affinity autoantibodies able to recognise mouse brain antigens, in a process dependent on LTß signalling. A mid-throughput screening identified several host factors recognised by these autoantibodies, including myelin basic protein (MBP), coinciding with cortical demyelination and brain pathology. In humans, we identified the presence of autoreactive IgG antibodies in the cerebrospinal fluid (CSF) of second stage HAT patients that recognised human brain lysates and MBP, consistent with our findings in experimental infections. Lastly, we found that the pathological B cell responses we observed in the meninges required the presence of T. brucei in the CNS, as suramin treatment before the onset of the CNS stage prevented the accumulation of GL7+ CD95+ GC-like B cells and brain-specific autoantibody deposition. Taken together, our data provide evidence that the meningeal immune response during chronic T. brucei infection results in the acquisition of lymphoid tissue-like properties, broadening our understanding of meningeal immunity in the context of chronic infections. These findings have wider implications for understanding the mechanisms underlying the formation ELAs during chronic inflammation resulting in autoimmunity in mice and humans, as observed in other autoimmune neurodegenerative disorders, including neuropsychiatric lupus and multiple sclerosis.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Humanos , Animais , Camundongos , Infecção Persistente , Meninges/metabolismo , Tecido Linfoide/metabolismo , Autoanticorpos
9.
Nat Commun ; 14(1): 7070, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923768

RESUMO

In the skin, Trypanosoma brucei colonises the subcutaneous white adipose tissue, and is proposed to be competent for forward transmission. The interaction between parasites, adipose tissue, and the local immune system is likely to drive the adipose tissue wasting and weight loss observed in cattle and humans infected with T. brucei. However, mechanistically, events leading to subcutaneous white adipose tissue wasting are not fully understood. Here, using several complementary approaches, including mass cytometry by time of flight, bulk and single cell transcriptomics, and in vivo genetic models, we show that T. brucei infection drives local expansion of several IL-17A-producing cells in the murine WAT, including TH17 and Vγ6+ cells. We also show that global IL-17 deficiency, or deletion of the adipocyte IL-17 receptor protect from infection-induced WAT wasting and weight loss. Unexpectedly, we find that abrogation of adipocyte IL-17 signalling results in a significant accumulation of Dpp4+ Pi16+ interstitial preadipocytes and increased extravascular parasites in the WAT, highlighting a critical role for IL-17 signalling in controlling preadipocyte fate, subcutaneous WAT dynamics, and local parasite burden. Taken together, our study highlights the central role of adipocyte IL-17 signalling in controlling WAT responses to infection, suggesting that adipocytes are critical coordinators of tissue dynamics and immune responses to T. brucei infection.


Assuntos
Parasitos , Trypanosoma brucei brucei , Humanos , Camundongos , Animais , Bovinos , Interleucina-17 , Tecido Adiposo , Gordura Subcutânea , Tecido Adiposo Branco , Caquexia
10.
Nat Commun ; 14(1): 5279, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644007

RESUMO

African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.


Assuntos
Dermatite , Trypanosoma brucei brucei , Feminino , Animais , Camundongos , Interleucina-17 , Infecção Persistente , Adiposidade , Obesidade , Caquexia , Inflamação
11.
Infect Genet Evol ; 111: 105416, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889485

RESUMO

Eliminating schistosomiasis as a public health problem by 2030 requires a better understanding of the disease transmission, especially the asymmetric distribution of worm burden in individuals living and sharing the same environment. It is in this light that this study was designed to identify human genetic determinants associated with high burden of S. mansoni and also with the plasma concentrations of IgE and four cytokines in children from two schistosomiasis endemic areas of Cameroon. In school-aged children of schistosomiasis endemic areas of Makenene and Nom-Kandi of Cameroon, S. mansoni infections and their infection intensities were evaluated in urine and stool samples using respectively the Point-of-care Circulating Cathodic Antigen test (POC-CCA) and the Kato Katz (KK) test. Thereafter, blood samples were collected in children harbouring high burden of schistosome infections as well as in their parents and siblings. DNA extracts and plasma were obtained from blood. Polymorphisms at 14 loci of five genes were assessed using PCR-restriction fragment length polymorphism and amplification-refractory mutation system. The ELISA test enabled to determine the plasma concentrations of IgE, IL-13, IL-10, IL-4 and IFN-γ. The prevalence of S. mansoni infections was significantly higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in Makenene (48.6% for POC-CCA and 7.9% for KK) compared to Nom-Kandi (31% for POC-CCA and 4.3% for KK). The infection intensities were also higher (P < 0.0001 for POC-CCA; P = 0.001 for KK) in children from Makenene than those from Nom-Kandi. The allele C of SNP rs3024974 of STAT6 was associated with an increased risk of bearing high burden of S. mansoni both in the additive (p = 0.009) and recessive model (p = 0.01) while the allele C of SNP rs1800871 of IL10 was protective (p = 0.0009) against high burden of S. mansoni. The alleles A of SNP rs2069739 of IL13 and G of SNP rs2243283 of IL4 were associated with an increased risk of having low plasma concentrations of IL-13 (P = 0.04) and IL-10 (P = 0.04), respectively. This study showed that host genetic polymorphisms may influence the outcome (high or low worm burden) of S. mansoni infections and also the plasma concentrations of some cytokines.


Assuntos
Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Criança , Schistosoma mansoni/genética , Interleucina-13/genética , Esquistossomose mansoni/epidemiologia , Esquistossomose mansoni/genética , Interleucina-10/genética , Interleucina-4/genética , Citocinas/genética , Camarões/epidemiologia , Antígenos de Helmintos/genética , Sensibilidade e Especificidade , Polimorfismo Genético , Prevalência , Imunoglobulina E , Fezes
12.
Nat Commun ; 13(1): 5752, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180478

RESUMO

Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and induces profound reactivity of glial cells and neuroinflammation when the parasites colonise the central nervous system. However, the transcriptional and functional responses of the brain to chronic T. brucei infection remain poorly understood. By integrating single cell and spatial transcriptomics of the mouse brain, we identify that glial responses triggered by infection are readily detected in the proximity to the circumventricular organs, including the lateral and 3rd ventricle. This coincides with the spatial localisation of both slender and stumpy forms of T. brucei. Furthermore, in silico predictions and functional validations led us to identify a previously unknown crosstalk between homeostatic microglia and Cd138+ plasma cells mediated by IL-10 and B cell activating factor (BAFF) signalling. This study provides important insights and resources to improve understanding of the molecular and cellular responses in the brain during infection with African trypanosomes.


Assuntos
Parasitos , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Fator Ativador de Células B , Encéfalo/parasitologia , Humanos , Interleucina-10 , Camundongos , Microglia , Plasmócitos , Transcriptoma , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia
13.
Int J Epidemiol ; 51(5): 1361-1370, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771662

RESUMO

BACKGROUND: Nigeria is Africa's most populated country. By November 2021 it had experienced three waves of SARS-CoV-2 infection. Peer-reviewed seroprevalence data assessing the proportion of the Nigerian population that have been infected were extremely limited. METHODS: We conducted a serosurvey in one urban site (n = 400) and one rural site (n = 402) in Kaduna State, Nigeria between 11 October 2021 and 8 November 2021. Z-tests were used to compare seroprevalence across age groups, locations and sexes. T tests were used to determine whether age or household size are associated with seropositivity. Associations between seropositivity and recent history of common Covid-19 symptoms were tested using logistic regression. RESULTS: SARS-CoV-2 antibodies were detected in 42.5% an 53.5% of participants at the urban and rural sites, respectively The overall age- and sex- stratified seroprevalence was 43.7% (42.2% for unvaccinated individuals). The data indicate an infection rate in Kaduna State ≥359-fold the rate derived from polymerase chain reaction-confirmed cases. In the urban site, seroprevalence among females and participants aged <20 was lower than other groups. Reporting loss of sense of taste and/or smell was strongly associated with seropositive status. Associations with seropositivity were also found for the reporting of dry cough, fever, headache, nausea and sore throat. CONCLUSIONS: This study provides baseline SARS-CoV-2 seroprevalence in Kaduna State, Nigeria, immediately prior to the spread of the Omicron variant. It indicates that in October/November 2021, approximately 56% of the population did not have detectable antibodies, and population subgroups with particularly low seroprevalence remain. It highlights limitations in using PCR-confirmed cases to estimate infection rates. The data will inform public health strategies in Nigeria and other sub-Saharan African countries with limited SARS-CoV-2 seroprevalence data.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/epidemiologia , Feminino , Humanos , Nigéria/epidemiologia , Estudos Soroepidemiológicos
14.
PLoS Negl Trop Dis ; 15(11): e0009939, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752454

RESUMO

Subspecies of the protozoan parasite Trypanosoma brucei are the causative agents of Human African Trypanosomiasis (HAT), a debilitating neglected tropical disease prevalent across sub-Saharan Africa. HAT case numbers have steadily decreased since the start of the century, and sustainable elimination of one form of the disease is in sight. However, key to this is the development of novel drugs to combat the disease. Acoziborole is a recently developed benzoxaborole, currently in advanced clinical trials, for treatment of stage 1 and stage 2 HAT. Importantly, acoziborole is orally bioavailable, and curative with one dose. Recent studies have made significant progress in determining the molecular mode of action of acoziborole. However, less is known about the potential mechanisms leading to acoziborole resistance in trypanosomes. In this study, an in vitro-derived acoziborole-resistant cell line was generated and characterised. The AcoR line exhibited significant cross-resistance with the methyltransferase inhibitor sinefungin as well as hypersensitisation to known trypanocides. Interestingly, transcriptomics analysis of AcoR cells indicated the parasites had obtained a procyclic- or stumpy-like transcriptome profile, with upregulation of procyclin surface proteins as well as differential regulation of key metabolic genes known to be expressed in a life cycle-specific manner, even in the absence of major morphological changes. However, no changes were observed in transcripts encoding CPSF3, the recently identified protein target of acoziborole. The results suggest that generation of resistance to this novel compound in vitro can be accompanied by transcriptomic switches resembling a procyclic- or stumpy-type phenotype.


Assuntos
Resistência a Medicamentos , Proteínas de Protozoários/genética , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo
16.
PLoS Pathog ; 17(11): e1010060, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780575

RESUMO

Human African Trypanosomiasis (HAT) has been responsible for several deadly epidemics throughout the 20th century, but a renewed commitment to disease control has significantly reduced new cases and motivated a target for the elimination of Trypanosoma brucei gambiense-HAT by 2030. However, the recent identification of latent human infections, and the detection of trypanosomes in extravascular tissues hidden from current diagnostic tools, such as the skin, has added new complexity to identifying infected individuals. New and improved diagnostic tests to detect Trypanosoma brucei infection by interrogating the skin are therefore needed. Recent advances have improved the cost, sensitivity and portability of Raman spectroscopy technology for non-invasive medical diagnostics, making it an attractive tool for gambiense-HAT detection. The aim of this work was to assess and develop a new non-invasive diagnostic method for T. brucei through Raman spectroscopy of the skin. Infections were performed in an established murine disease model using the animal-infective Trypanosoma brucei brucei subspecies. The skin of infected and matched control mice was scrutinized ex vivo using a confocal Raman microscope with 532 nm excitation and in situ at 785 nm excitation with a portable field-compatible instrument. Spectral evaluation and Principal Component Analysis confirmed discrimination of T. brucei-infected from uninfected tissue, and a characterisation of biochemical changes in lipids and proteins in parasite-infected skin indicated by prominent Raman peak intensities was performed. This study is the first to demonstrate the application of Raman spectroscopy for the detection of T. brucei by targeting the skin of the host. The technique has significant potential to discriminate between infected and non-infected tissue and could represent a unique, non-invasive diagnostic tool in the goal for elimination of gambiense-HAT as well as for Animal African Trypanosomiasis (AAT).


Assuntos
Pele/patologia , Análise Espectral Raman/métodos , Trypanosoma brucei brucei/fisiologia , Trypanosoma brucei gambiense/fisiologia , Tripanossomíase Africana/diagnóstico , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pele/parasitologia , Tripanossomíase Africana/parasitologia
17.
Clin Infect Dis ; 73(1): 12-20, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638003

RESUMO

BACKGROUND: The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis. METHODS: To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea. Of the 5417 subjects serologically screened for gHAT, 66 were enrolled into our study and underwent a dermatological examination. At enrollment, 11 seronegative, 8 unconfirmed seropositive, and 18 confirmed seropositive individuals had blood samples and skin biopsies taken and examined for trypanosomes by molecular and immunohistological methods. RESULTS: In seropositive individuals, dermatological symptoms were significantly more frequent, relative to seronegative controls. T.b. gambiense parasites were present in the blood of all confirmed cases (n = 18) but not in unconfirmed seropositive individuals (n = 8). However, T. brucei parasites were detected in the extravascular dermis of all unconfirmed seropositive individuals and all confirmed cases. Skin biopsies of all treated cases and most seropositive untreated individuals progressively became negative for trypanosomes 6 and 20 months later. CONCLUSIONS: Our results highlight the skin as a potential reservoir for African trypanosomes, with implications for our understanding of this disease's epidemiology in the context of its planned elimination and underlining the skin as a novel target for gHAT diagnostics.


Assuntos
Tripanossomíase Africana , Animais , Guiné , Humanos , Estudos Prospectivos , Trypanosoma brucei gambiense , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia
18.
AAS Open Res ; 3: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964195

RESUMO

Background: Human African trypanosomiasis (HAT) is a protozoal disease transmitted by tsetse flies. Infection with trypanosomes can lead directly to active HAT or latent infection with no detectable parasites, which may progress to active HAT or to spontaneous self-cure. Genetic variation could explain these differences in the outcome of infection. To test this hypothesis, polymorphisms in 17 candidate genes were tested ( APOL1 [ G1 and G2], CFH, HLA-A, HPR, HP, IL1B, IL12B, IL12RB1, IL10, IL4R, MIF, TNFA , IL6, IL4, IL8, IFNG, and HLA-G). Methods: Samples were collected in Democratic Republic of the Congo. 233 samples were genotyped: 100 active HAT cases, 33 from subjects with latent infections and 100 negative controls. Commercial service providers genotyped polymorphisms at 96 single nucleotide polymorphisms (SNPs) on 17 genes. Data were analyzed using Plink V1.9 software and R. Loci, with suggestive associations (uncorrected p < 0.05) validated using an additional 594 individuals, including 164 cases and 430 controls. Results: After quality control, 87 SNPs remained in the analysis. Two SNPs in IL4 and two in IFNG were suggestively associated (uncorrected p<0.05) with a differential risk of developing a Trypanosoma brucei gambiense infection in the Congolese population. The IFNG minor allele (rs2430561, rs2069718) SNPs were protective in comparison between latent infections and controls. Carriers of the rs2243258_T and rs2243279_A alleles of IL4 and the rs2069728_T allele of IFNG had a reduced risk of developing illness or latent infection, respectively. None of these associations were significant after Bonferroni correction for multiple testing. A validation study using more samples was run to determine if the absence of significant association was due to lack of power. Conclusions: This study showed no evidence of an association of HAT with IL4 and IFNG SNPs or with APOL1 G1 and G2 alleles, which have been found to be protective in other studies.

19.
Am J Hum Genet ; 107(3): 473-486, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32781046

RESUMO

Africa contains more human genetic variation than any other continent, but the majority of the population-scale analyses of the African peoples have focused on just two of the four major linguistic groups, the Niger-Congo and Afro-Asiatic, leaving the Nilo-Saharan and Khoisan populations under-represented. In order to assess genetic variation and signatures of selection within a Nilo-Saharan population and between the Nilo-Saharan and Niger-Congo and Afro-Asiatic, we sequenced 50 genomes from the Nilo-Saharan Lugbara population of North-West Uganda and 250 genomes from 6 previously unsequenced Niger-Congo populations. We compared these data to data from a further 16 Eurasian and African populations including the Gumuz, another putative Nilo-Saharan population from Ethiopia. Of the 21 million variants identified in the Nilo-Saharan population, 3.57 million (17%) were not represented in dbSNP and included predicted non-synonymous mutations with possible phenotypic effects. We found greater genetic differentiation between the Nilo-Saharan Lugbara and Gumuz populations than between any two Afro-Asiatic or Niger-Congo populations. F3 tests showed that Gumuz contributed a genetic component to most Niger-Congo B populations whereas Lugabara did not. We scanned the genomes of the Lugbara for evidence of selective sweeps. We found selective sweeps at four loci (SLC24A5, SNX13, TYRP1, and UVRAG) associated with skin pigmentation, three of which already have been reported to be under selection. These selective sweeps point toward adaptations to the intense UV radiation of the Sahel.


Assuntos
Adaptação Fisiológica/genética , Variação Genética/genética , Seleção Genética/genética , Pigmentação da Pele/genética , Antiporters/genética , População Negra/genética , Gerenciamento de Dados , Etiópia/epidemiologia , Feminino , Genética Populacional , Genoma Humano/genética , Haplótipos/genética , Humanos , Masculino , Glicoproteínas de Membrana/genética , Oxirredutases/genética , Polimorfismo de Nucleotídeo Único/genética , Nexinas de Classificação/genética , Proteínas Supressoras de Tumor/genética , Uganda/epidemiologia
20.
Front Immunol ; 11: 1250, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595652

RESUMO

African trypanosomes are single-celled extracellular protozoan parasites transmitted by tsetse fly vectors across sub-Saharan Africa, causing serious disease in both humans and animals. Mammalian infections begin when the tsetse fly penetrates the skin in order to take a blood meal, depositing trypanosomes into the dermal layer. Similarly, onward transmission occurs when differentiated and insect pre-adapted forms are ingested by the fly during a blood meal. Between these transmission steps, trypanosomes access the systemic circulation of the vertebrate host via the skin-draining lymph nodes, disseminating into multiple tissues and organs, and establishing chronic, and long-lasting infections. However, most studies of the immunobiology of African trypanosomes have been conducted under experimental conditions that bypass the skin as a route for systemic dissemination (typically via intraperitoneal or intravenous routes). Therefore, the importance of these initial interactions between trypanosomes and the skin at the site of initial infection, and the implications for these processes in infection establishment, have largely been overlooked. Recent studies have also demonstrated active and complex interactions between the mammalian host and trypanosomes in the skin during initial infection and revealed the skin as an overlooked anatomical reservoir for transmission. This highlights the importance of this organ when investigating the biology of trypanosome infections and the associated immune responses at the initial site of infection. Here, we review the mechanisms involved in establishing African trypanosome infections and potential of the skin as a reservoir, the role of innate immune cells in the skin during initial infection, and the subsequent immune interactions as the parasites migrate from the skin. We suggest that a thorough identification of the mechanisms involved in establishing African trypanosome infections in the skin and their progression through the host is essential for the development of novel approaches to interrupt disease transmission and control these important diseases.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Pele/parasitologia , Trypanosoma/parasitologia , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/transmissão , Animais , Humanos , Pele/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...