Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5085, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038546

RESUMO

African trypanosomes are extracellular pathogens of mammals and are exposed to the adaptive and innate immune systems. Trypanosomes evade the adaptive immune response through antigenic variation, but little is known about how they interact with components of the innate immune response, including complement. Here we demonstrate that an invariant surface glycoprotein, ISG65, is a receptor for complement component 3 (C3). We show how ISG65 binds to the thioester domain of C3b. We also show that C3 contributes to control of trypanosomes during early infection in a mouse model and provide evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance. Deposition of C3b on pathogen surfaces, such as trypanosomes, is a central point in activation of the complement system. In ISG65, trypanosomes have evolved a C3 receptor which diminishes the downstream effects of C3 deposition on the control of infection.


Assuntos
Glicoproteínas de Membrana/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei , Trypanosoma , Animais , Complemento C3 , Antígeno de Macrófago 1 , Mamíferos/metabolismo , Camundongos , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo
2.
Cell Surf ; 8: 100078, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35647418

RESUMO

East Coast Fever is a devastating African cattle disease caused by the apicomplexan parasite, Theileria parva. Little is known about the cell surface, and few proteins have been identified. Here, we take an in silico approach to identify novel cell surface proteins, and predict the structure of four key proteins.

3.
Sci Rep ; 12(1): 6394, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35430620

RESUMO

African trypanosomes, such as Trypanosoma brucei, are flagellated protozoa which proliferate in mammals and cause a variety of diseases in people and animals. In a mammalian host, the external face of the African trypanosome plasma membrane is covered by a densely packed coat formed of variant surface glycoprotein (VSG), which counteracts the host's adaptive immune response by antigenic variation. The VSG is attached to the external face of the plasma membrane by covalent attachment of the C-terminus to glycosylphosphatidylinositol. As the trypanosome grows, newly synthesised VSG is added to the plasma membrane by vesicle fusion to the flagellar pocket, the sole location of exo- and endocytosis. Snake venoms contain dozens of components, including proteases and phospholipases A2. Here, we investigated the effect of Naja nigricollis venom on T. brucei with the aim of describing the response of the trypanosome to hydrolytic attack on the VSG. We found no evidence for VSG hydrolysis, however, N. nigricollis venom caused: (i) an enlargement of the flagellar pocket, (ii) the Rab11 positive endosomal compartments to adopt an abnormal dispersed localisation, and (iii) cell cycle arrest prior to cytokinesis. Our results indicate that a single protein family, the phospholipases A2 present in N. nigricollis venom, may be necessary and sufficient for the effects. This study provides new molecular insight into T. brucei biology and possibly describes mechanisms that could be exploited for T. brucei targeting.


Assuntos
Trypanosoma brucei brucei , Animais , Venenos Elapídicos/metabolismo , Endocitose , Humanos , Mamíferos/metabolismo , Naja , Fosfolipases A2/metabolismo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
4.
Nat Commun ; 11(1): 1326, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165615

RESUMO

Persistent pathogens have evolved to avoid elimination by the mammalian immune system including mechanisms to evade complement. Infections with African trypanosomes can persist for years and cause human and animal disease throughout sub-Saharan Africa. It is not known how trypanosomes limit the action of the alternative complement pathway. Here we identify an African trypanosome receptor for mammalian factor H, a negative regulator of the alternative pathway. Structural studies show how the receptor binds ligand, leaving inhibitory domains of factor H free to inactivate complement C3b deposited on the trypanosome surface. Receptor expression is highest in developmental stages transmitted to the tsetse fly vector and those exposed to blood meals in the tsetse gut. Receptor gene deletion reduced tsetse infection, identifying this receptor as a virulence factor for transmission. This demonstrates how a pathogen evolved a molecular mechanism to increase transmission to an insect vector by exploitation of a mammalian complement regulator.


Assuntos
Fator H do Complemento/metabolismo , Trypanosoma/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Bovinos , Membrana Celular/metabolismo , Complemento C3b/metabolismo , Fator H do Complemento/química , Cricetinae , Cricetulus , Camundongos Endogâmicos BALB C , Parasitemia/sangue , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Regulação para Cima
5.
Nat Microbiol ; 4(12): 2074-2081, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636418

RESUMO

To maintain prolonged infection of mammals, African trypanosomes have evolved remarkable surface coats and a system of antigenic variation1. Within these coats are receptors for macromolecular nutrients such as transferrin2,3. These must be accessible to their ligands but must not confer susceptibility to immunoglobulin-mediated attack. Trypanosomes have a wide host range and their receptors must also bind ligands from diverse species. To understand how these requirements are achieved, in the context of transferrin uptake, we determined the structure of a Trypanosoma brucei transferrin receptor in complex with human transferrin, showing how this heterodimeric receptor presents a large asymmetric ligand-binding platform. The trypanosome genome contains a family of around 14 transferrin receptors4, which has been proposed to allow binding to transferrin from different mammalian hosts5,6. However, we find that a single receptor can bind transferrin from a broad range of mammals, indicating that receptor variation is unlikely to be necessary for promiscuity of host infection. In contrast, polymorphic sites and N-linked glycans are preferentially found in exposed positions on the receptor surface, not contacting transferrin, suggesting that transferrin receptor diversification is driven by a need for antigenic variation in the receptor to prolong survival in a host.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Evasão da Resposta Imune , Receptores da Transferrina/química , Receptores da Transferrina/imunologia , Transferrina/metabolismo , Trypanosoma brucei brucei/imunologia , Variação Antigênica , Variação Genética , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Tripanossomíase Africana/imunologia
6.
PLoS Negl Trop Dis ; 13(5): e0007373, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31120889

RESUMO

Infections of humans and livestock with African trypanosomes are treated with drugs introduced decades ago that are not always fully effective and often have severe side effects. Here, the trypanosome haptoglobin-haemoglobin receptor (HpHbR) has been exploited as a route of uptake for an antibody-drug conjugate (ADC) that is completely effective against Trypanosoma brucei in the standard mouse model of infection. Recombinant human anti-HpHbR monoclonal antibodies were isolated and shown to be internalised in a receptor-dependent manner. Antibodies were conjugated to a pyrrolobenzodiazepine (PBD) toxin and killed T. brucei in vitro at picomolar concentrations. A single therapeutic dose (0.25 mg/kg) of a HpHbR antibody-PBD conjugate completely cured a T. brucei mouse infection within 2 days with no re-emergence of infection over a subsequent time course of 77 days. These experiments provide a demonstration of how ADCs can be exploited to treat protozoal diseases that desperately require new therapeutics.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antiprotozoários/administração & dosagem , Benzodiazepinas/administração & dosagem , Pirróis/administração & dosagem , Tripanossomíase Africana/tratamento farmacológico , Animais , Anticorpos Monoclonais/química , Antiprotozoários/química , Benzodiazepinas/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pirróis/química , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/parasitologia
7.
PLoS Pathog ; 11(12): e1005259, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26719972

RESUMO

Variations on the statement "the variant surface glycoprotein (VSG) coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i) Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii) Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.


Assuntos
Tripanossomíase Africana/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Interações Hospedeiro-Parasita , Humanos , Conformação Proteica , Trypanosoma brucei brucei
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...