Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrine ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285412

RESUMO

Obesity is the best described risk factor for the development of non-alcoholic fatty liver disease (NAFLD)/metabolic dysfunction associated steatotic liver disease (MASLD) and polycystic ovary syndrome (PCOS) while the major pathogenic mechanism linking these entities is insulin resistance (IR). IR is primarily caused by increased secretion of proinflammatory cytokines, adipokines, and lipids from visceral adipose tissue. Increased fatty acid mobilization results in ectopic fat deposition in the liver which causes endoplasmic reticulum stress, mitochondrial dysfunction, and oxidative stress resulting in increased cytokine production and subsequent inflammation. Similarly, IR with hyperinsulinemia cause hyperandrogenism, the hallmark of PCOS, and inflammation in the ovaries. Proinflammatory cytokines from both liver and ovaries aggravate IR thus providing a complex interaction between adipose tissue, liver, and ovaries in inducing metabolic abnormalities in obese subjects. Although many pathogenic mechanisms of IR, NAFLD/MASLD, and PCOS are known, there is still no effective therapy for these entities suggesting the need for further evaluation of their pathogenesis. Extracellular vesicles (EVs) represent a novel cross-talk mechanism between organs and include membrane-bound vesicles containing proteins, lipids, and nucleic acids that may change the phenotype and function of target cells. Adipose tissue releases EVs that promote IR, the development of all stages of NAFLD/MASLD and PCOS, while mesenchymal stem cell-derived AVs may alleviate metabolic abnormalities and may represent a novel therapeutic device in NAFLD/MASLD, and PCOS. The purpose of this review is to summarize the current knowledge on the role of adipose tissue-derived EVs in the pathogenesis of IR, NAFLD/MASLD, and PCOS.

2.
Front Pharmacol ; 13: 897279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694268

RESUMO

Introduction: Obstructive sleep apnea (OSA) is a serious condition linked with various metabolic disorders and associated with increased all-cause and cardiovascular mortality. Although the potential mechanisms of pathophysiological processes related to OSA are relatively well known, the data regarding the correlation between obstructive sleep apnea, dyslipidemia, and systemic inflammation are still inconclusive. Methods: The study was conducted as a retrospective cohort study including 328 patients with newly diagnosed obstructive sleep apnea during the period between April 2018, and May 2020, in University Clinical Hospital Center "Bezanijska kosa", Belgrade, Serbia. Polysomnography was performed in all patients according to the protocol. Numerous demographic, antropometric, laboratory, and clinical data were correlated to Apnea-Hypopnea Index (AHI) as a dependent variable, with a particular review on the relation between lipid abnormalities, inflammatory parameters, and obstructive sleep apnea severity. Multivariate logistic regression model was used to assess predictors of severe OSA (AHI ≥30 per hour). Results: A total of 328 patients were included in the study. The mean age of the patients was 54.0 ± 12.5 years and more than two-thirds were male (68.8%). The majority of the patients had an AHI of at least 30 events per hour. Patients with severe OSA were more frequently male, obese, hypertensive and hyperlipidemic, and had increased neck circumference (both male and female patients). One hundred and thirty-two patients had metabolic syndrome. Patients with severe OSA more frequently had metabolic syndrome and significantly higher levels of glucose, creatinine, uric acid, AST, ALT, CK, microalbumine/creatinine ratio, triglyceride, total cholesterol, HDL, total cholеsterol to HDL-C ratio, CRP, and ESR. In the multivariate linear regression model with AHI (≥30 per hour) as a dependent variable, of demographic and clinical data, triglycerides ≥1.7 mmol/L and CRP >5 mg/L were significantly associated with AHI≥30 per hour. Conclusion: The present study on 328 patients with newly diagnosed obstructive sleep apnea revealed significant relation of lipid abnormalities, inflammatory markers, and other clinically important data with obstructive sleep apnea severity. These results can lead to a better understanding of the underlying pathophysiological processes and open the door to a new world of potentially useful therapeutic modalities.

3.
Endocr Connect ; 11(4)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258478

RESUMO

Background: Polycystic ovary syndrome (PCOS) is considered a risk factor for the development of type 2 diabetes mellitus (T2DM). However, which is the most appropriate way to evaluate dysglycemia in women with PCOS and who are at increased risk are as yet unclear. Aim of the study: To determine the prevalence of T2DM, impaired glucose tolerance (IGT), and impaired fasting glucose (IFG) in PCOS women and potential factors to identify those at risk. Subjects and methods: The oral glucose tolerance test (OGTT), biochemical/hormonal profile, and ovarian ultrasound data from 1614 Caucasian women with PCOS and 362 controls were analyzed in this cross-sectional multicenter study. The data were categorized according to age and BMI. Results: Dysglycemia (T2DM, IGT, and IFG according to World Health Organization criteria) was more frequent in the PCOS group compared to controls: 2.2% vs 0.8%, P = 0.04; 9.5% vs 7.4%, P = 0.038; 14.2% vs 9.1%, P = 0.002, respectively. OGTT was essential for T2DM diagnosis, since in 88% of them basal glucose values were inconclusive for diagnosis. The presence of either T2DM or IFG was irrespective of age (P = 0.54) and BMI (P = 0.32), although the latter was associated with IGT (P = 0.021). There was no impact of age and BMI status on the prevalence of T2DM or IFG. Regression analysis revealed a role for age, BMI, fat deposition, androgens, and insulin resistance for dysglycemia. However, none of the factors prevailed as a useful marker employed in clinical practice. Conclusions: One-third of our cohort of PCOS women with either T2DM or IGT displayed normal fasting glucose values but without confirming any specific predictor for dysglycemic condition. Hence, the evaluation of glycemic status using OGTT in all women with PCOS is strongly supported.

4.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801983

RESUMO

Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.


Assuntos
Ácidos Graxos/metabolismo , Lipidômica/métodos , Lipídeos/análise , Traumatismo por Reperfusão/terapia , Tecido Adiposo/metabolismo , Animais , Carnitina/metabolismo , Humanos , Lipídeos/química , Mitocôndrias/metabolismo , Estresse Oxidativo , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/metabolismo
5.
Exp Clin Endocrinol Diabetes ; 125(8): 522-529, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28407665

RESUMO

Polycystic ovary syndrome is a heterogeneous endocrine and metabolic disorder associated with abdominal obesity, dyslipidemia and insulin resistance. Since abdominal obesity is characterized by low-grade inflammation, the aim of the study was to investigate whether visceral adipose tissue inflammation linked to abdominal obesity and dyslipidemia could lead to impaired insulin sensitivity in the animal model of polycystic ovary syndrome.Female Wistar rats were treated with nonaromatizable 5α-dihydrotestosterone pellets in order to induce reproductive and metabolic characteristics of polycystic ovary syndrome. Glucose, triglycerides, non-esterified fatty acids and insulin were determined in blood plasma. Visceral adipose tissue inflammation was evaluated by the nuclear factor kappa B intracellular distribution, macrophage migration inhibitory factor protein level, as well as TNFα, IL6 and IL1ß mRNA levels. Insulin sensitivity was assessed by intraperitoneal glucose tolerance test and homeostasis model assessment index, and through analysis of insulin signaling pathway in the visceral adipose tissue.Dihydrotestosterone treatment led to increased body weight, abdominal obesity and elevated triglycerides and non-esterified fatty acids, which were accompanied by the activation of nuclear factor kappa B and increase in macrophage migration inhibitory factor, IL6 and IL1ß levels in the visceral adipose tissue. In parallel, insulin sensitivity was affected in 5α-dihydrotestosterone-treated animals only at the systemic and not at the level of visceral adipose tissue.The results showed that abdominal obesity and dyslipidemia in the animal model of polycystic ovary syndrome were accompanied with low-grade inflammation in the visceral adipose tissue. However, these metabolic disturbances did not result in decreased tissue insulin sensitivity.


Assuntos
Di-Hidrotestosterona/efeitos adversos , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade Abdominal/metabolismo , Síndrome do Ovário Policístico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Gordura Intra-Abdominal/patologia , Obesidade Abdominal/induzido quimicamente , Obesidade Abdominal/patologia , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar
6.
Mol Cell Endocrinol ; 399: 22-31, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25179821

RESUMO

Polycystic ovary syndrome (PCOS) is a reproductive and metabolic disorder characterized by hyperandrogenism, ovulatory dysfunction, visceral obesity and insulin resistance. We hypothesized that changes in glucocorticoid metabolism and signaling in the visceral adipose tissue may contribute to disturbances of lipid metabolism in the rat model of PCOS obtained by 5α-dihydrotestosterone (DHT) treatment of prepubertal female Wistar rats. The results confirmed that DHT treatment caused anovulation, obesity and dyslipidemia. Enhanced glucocorticoid prereceptor metabolism, assessed by elevated intracellular corticosterone and increased 11 beta-hydroxysteroid dehydrogenase type 1 mRNA and protein levels, was accompanied by glucocorticoid receptor (GR) nuclear accumulation. In concert with the increased expression of GR-regulated prolipogenic genes (lipin-1, sterol regulatory element binding protein 1, fatty acid synthase, phosphoenolpyruvate carboxykinase), histological analyses revealed hypertrophic adipocytes. The results suggest that glucocorticoids influence lipid metabolism in the visceral adipose tissue in the way that may contribute to pathogenesis of metabolic disturbances associated with PCOS.


Assuntos
Adipócitos/metabolismo , Androgênios/efeitos adversos , Di-Hidrotestosterona/efeitos adversos , Glucocorticoides/metabolismo , Gordura Intra-Abdominal/metabolismo , Síndrome do Ovário Policístico/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/biossíntese , Adipócitos/patologia , Androgênios/farmacologia , Animais , Di-Hidrotestosterona/farmacologia , Ácido Graxo Sintase Tipo I/biossíntese , Feminino , Gordura Intra-Abdominal/patologia , Proteínas Nucleares/biossíntese , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , Fosfoenolpiruvato Carboxiquinase (ATP)/biossíntese , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Wistar , Receptores de Glucocorticoides/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...