Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281193

RESUMO

During the early months of the SARS-CoV-2 pandemic, notable uncertainty emerged regarding the role of children in transmission dynamics 1. With time, it became more clear that children were susceptible to infection with SARS-CoV-2, but that the vast majority of children experienced mild symptoms with lower incidence of severe disease 2. This pattern remained consistent despite the later emergence of SARS-CoV-2 variants, including Delta and Omicron, even among children <5 ineligible for vaccination3. The relative lack of severe disease in the pediatric population raised questions regarding viral kinetics and infectivity in children versus adults.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263229

RESUMO

BackgroundNovel SARS-CoV-2 Variants of Concern (VoC) pose a challenge to controlling the COVID-19 pandemic. Previous studies indicate that clinical samples collected from individuals infected with the Delta variant may contain higher levels of RNA than previous variants, but the relationship between viral RNA and infectious virus for individual variants is unknown. MethodsWe measured infectious viral titer (using a micro-focus forming assay) as well as total and subgenomic viral RNA levels (using RT-PCR) in a set of 165 clinical samples containing SARS-CoV-2 Alpha, Delta and Epsilon variants that were processed within two days of collection from the patient. ResultsWe observed a high degree of variation in the relationship between viral titers and RNA levels. Despite the variability we observed for individual samples the overall infectivity differed among the three variants. Both Delta and Epsilon had significantly higher infectivity than Alpha, as measured by the number of infectious units per quantity of viral E gene RNA (6 and 4 times as much, p=0.0002 and 0.009 respectively) or subgenomic E RNA (11 and 7 times as much, p<0.0001 and 0.006 respectively). ConclusionIn addition to higher viral RNA levels reported for the Delta variant, the infectivity (amount of replication competent virus per viral genome copy) may also be increased compared to Alpha. Measuring the relationship between live virus and viral RNA is an important step in assessing the infectivity of novel SARS-CoV-2 variants. An increase in the infectivity of the Delta variant may further explain increased spread and suggests a need for increased measures to prevent viral transmission. SIGNIFICANCE STATEMENTCurrent and future SARS-CoV-2 variants threaten our ability to control the COVID-19 pandemic. Variants with increased transmission, higher viral loads, or greater immune evasion are of particular concern. Viral loads are currently measured by the amount of viral RNA in a clinical sample rather than the amount of infectious virus. We measured both RNA and infectious virus levels directly in a set of 165 clinical specimens from Alpha, Epsilon or Delta variants. Our data shows that Delta is more infectious compared to Alpha, with [~] six times as much infectious virus for the same amount of RNA. This increase in infectivity suggests increased measures (vaccination, masking, distancing, ventilation) are needed to control Delta compared to Alpha.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-274639

RESUMO

There is an urgent need for anti-viral agents that treat SARS-CoV-2 infection. The shortest path to clinical use is repurposing of drugs that have an established safety profile in humans. Here, we first screened a library of 1,900 clinically safe drugs for inhibiting replication of OC43, a human beta-coronavirus that causes the common-cold and is a relative of SARS-CoV-2, and identified 108 effective drugs. We further evaluated the top 26 hits and determined their ability to inhibit SARS-CoV-2, as well as other pathogenic RNA viruses. 20 of the 26 drugs significantly inhibited SARS-CoV-2 replication in human lung cells (A549 epithelial cell line), with EC50 values ranging from 0.1 to 8 micromolar. We investigated the mechanism of action for these and found that masitinib, a drug originally developed as a tyrosine-kinase inhibitor for cancer treatment, strongly inhibited the activity of the SARS-CoV-2 main protease 3CLpro. X-ray crystallography revealed that masitinib directly binds to the active site of 3CLpro, thereby blocking its enzymatic activity. Mastinib also inhibited the related viral protease of picornaviruses and blocked picornaviruses replication. Thus, our results show that masitinib has broad anti-viral activity against two distinct beta-coronaviruses and multiple picornaviruses that cause human disease and is a strong candidate for clinical trials to treat SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA