Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 236: 113806, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394857

RESUMO

This work aims at improving and disclosing new properties of films based on polylactic acid (PLA) and a star-shaped polycaprolactone (PCL). Indeed, previous works demonstrated that the presence of ad-hoc synthesized PCL, characterized by low molecular weight and carboxyl end groups (coded as PCL-COOH), improves the elongation at break of the films compared to that of neat PLA and increases their functionality. To further improve the properties of the system, alternating layers of chitosan (CH) and DNA were deposited on the surface applying a Layer-by-Layer (LbL) technique. This method was chosen because it allows the properties of the system to be modified without affecting the specific features of the bulk. In addition, the LbL technique is easily scalable and environmentally friendly because it is based on the use of an aqueous solution of two biomaterials, namely DNA and CH, which are not only derived from renewable sources but are also biocompatible and biodegradable. IR measurements on model silicon substrates subjected to the same treatment as the films, pointed out a linear growth of the proposed LbL assembly. Indeed, FE-SEM measurements highlighted the deposition of a uniform coating. The presence of the CH/DNA assembly reduced the oxygen permeability under both dry and humid (50% R.H.) conditions when compared to the uncoated film. In addition, the coating had no relevant effect on the hydrolytic and enzymatic degradation of the system, so that the biodegradability of the film was maintained.


Assuntos
Quitosana , Poliésteres , Polieletrólitos , Poliésteres/química , Quitosana/química , DNA
2.
ACS Appl Mater Interfaces ; 15(50): 58850-58860, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055951

RESUMO

Transparent wood composites (TWs) offer the possibility of unique coloration effects. A colored transparent wood composite (C-TW) with enhanced fire retardancy was impregnated by metal ion solutions, followed by methyl methacrylate (MMA) impregnation and polymerization. Bleached birch wood with a preserved hierarchical structure acted as a host for metal ions. Cobalt, nickel, copper, and iron metal salts were used. The location and distribution of metal ions in C-TW as well as the mechanical performance, optical properties, and fire retardancy were investigated. The C-TW coloration is tunable by controlling the metal ion species and concentration. The metal ions reduced heat release rates and limited the production of smoke during forced combustion tests. The potential for scaled-up production was verified by fabricating samples with a dimension of 180 × 100 × 1 (l × b × h) mm3.

3.
ACS Appl Mater Interfaces ; 15(30): 36811-36821, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467121

RESUMO

New sustainable materials produced by green processing routes are required in order to meet the concepts of circular economy. The replacement of insulating materials comprising flammable synthetic polymers by bio-based materials represents a potential opportunity to achieve this task. In this paper, low-density and flame-retardant (FR) porous fiber networks are prepared by assembling Layer-by-Layer (LbL)-functionalized cellulose fibers by means of freeze-drying. The LbL coating, encompassing chitosan and sodium hexametaphosphate, enables the formation of a self-sustained porous structure by enhancing fiber-fiber interactions during the freeze-drying process. Fiber networks prepared from 3 Bi-Layer (BL)-coated fibers contain 80% wt of cellulose and can easily self-extinguish the flame during flammability tests in vertical configuration while displaying extremely low combustion rates in forced combustion tests. Smoke release is 1 order of magnitude lower than that of commercially available polyurethane foams. Such high FR efficiency is ascribed to the homogeneity of the deposited assembly, which produces a protective exoskeleton at the air/cellulose interface. The results reported in this paper represent an excellent opportunity for the development of fire-safe materials, encompassing natural components where sustainability and performance are maximized.

4.
Molecules ; 27(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36431909

RESUMO

Linear amphoteric polyamidoamines (PAAs) are usually water-soluble, biodegradable and biocompatible. Crosslinked PAAs form in water hydrogels, retaining most of the favorable properties of their linear counterparts. The hydrogels prepared by the radical post-polymerization of the oligo-α,ω-bisacrylamido-terminated PAA called AGMA1, obtained by the polyaddition of 4-aminobutylguanidine (agmatine) with 2,2-bis(acrylamido)acetic acid, exhibit excellent cell-adhesion properties both in vitro and in vivo. However, due to their low mechanical strength, AGMA1 hydrogels cannot be sewn to biological tissues and need to be reinforced with fibrous materials. In this work, short silk fibers gave excellent results in this sense, proving capable of establishing covalent bonds with the PAA matrix, thanks to their lysine content, which provided amino groups capable of reacting with the terminal acrylamide groups of the AGMA1 precursor in the final crosslinking phase. Morphological analyses demonstrated that the AGMA1 matrix was intimately interconnected and adherent to the silk fibers, with neither visible holes nor empty volumes. The silk/H-AGMA1 composites were still reversibly swellable in water. In the swollen state, they could be sewn and showed no detachment between fibers and matrix and exhibited significantly improved mechanical properties compared with the plain hydrogels, particularly as regards their Young's modulus and elongation at break.


Assuntos
Hidrogéis , Seda , Seda/química , Hidrogéis/química , Poliaminas/química , Água
5.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236113

RESUMO

The polyelectrolyte (PE)-based water dispersion of graphene-related materials (GRMs) represents an interesting intermediate for the development of advanced materials by sustainable processes. Although the proof of concept has been demonstrated, there is a lack of knowledge for what concerns the effects of parameters typical of PEs such as functionalization, molecular weight, and charge density. In this work, we evaluate the effects of such parameters on the quality and long-term stability of reduced graphite oxide (rGO) dispersion in aqueous media prepared by ultrasound sonication in the presence of different PEs. Four PEs were evaluated: polyacrylic acid (PAA), branched poly(ethylenimine) (BPEI), sodium carboxymethyl cellulose (CMC), and poly(sodium 4-styrenesulfonic acid) (PSS). The prepared dispersions were thoroughly characterized by means of UV-visible spectroscopy, thermogravimetric analysis, dynamic light scattering, and Raman spectroscopy. The highest concentrations of rGO were achieved by BPEI with a molecular weight of 25,000 and 270,000 Da (33 and 26 µg/mL, respectively). For other PEs, the rGO concentration was found to be independent of the molecular weight. The PAA-based dispersions displayed the best through-time stability while yielding homogeneous dispersion with a smaller average size and narrower size distribution.

6.
Adv Mater ; 34(38): e2204800, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35906189

RESUMO

Metal-organic frameworks (MOFs) are hybrid porous crystalline networks with tunable chemical and structural properties. However, their excellent potential is limited in practical applications by their hard-to-shape powder form, making it challenging to assemble MOFs into macroscopic composites with mechanical integrity. While a binder matrix enables hybrid materials, such materials have a limited MOF content and thus limited functionality. To overcome this challenge, nanoMOFs are combined with tailored same-charge high-aspect-ratio cellulose nanofibrils (CNFs) to manufacture robust, wet-stable, and multifunctional MOF-based aerogels with 90 wt% nanoMOF loading. The porous aerogel architectures show excellent potential for practical applications such as efficient water purification, CO2 and CH4 gas adsorption and separation, and fire-safe insulation. Moreover, a one-step carbonization process enables these aerogels as effective structural energy-storage electrodes. This work exhibits the unique ability of high-aspect-ratio CNFs to bind large amounts of nanoMOFs in structured materials with outstanding mechanical integrity-a quality that is preserved even after carbonization. The demonstrated process is simple and fully discloses the intrinsic potential of the nanoMOFs, resulting in synergetic properties not found in the components alone, thus paving the way for MOFs in macroscopic multifunctional composites.

7.
Carbohydr Polym ; 279: 119004, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980351

RESUMO

Nanocomposites based on components from nature, which can be recycled are of great interest in new materials for sustainable development. The range of properties of nacre-inspired hybrids of 1D cellulose and 2D clay platelets are investigated in nanocomposites with improved nanoparticle dispersion in the starting hydrocolloid mixture. Films with a wide range of compositions are prepared by capillary force assisted physical assembly (vacuum-assisted filtration) of TEMPO-oxidized cellulose nanofibers (TOCN) reinforced by exfoliated nanoclays of three different aspect ratios: saponite, montmorillonite and mica. X-ray diffraction and transmission electron micrographs show almost monolayer dispersion of saponite and montmorillonite and high orientation parallel to the film surface. Films exhibit ultimate strength up to 573 MPa. Young's modulus exceeds 38 GPa even at high MTM contents (40-80 vol%). Optical transmittance, UV-shielding, thermal shielding and fire-retardant properties are measured, found to be very good and are sensitive to the 2D nanoplatelet dispersion.


Assuntos
Celulose/química , Retardadores de Chama , Nanocompostos/química , Nanofibras/química , Silicatos/química , Óxidos N-Cíclicos/química , Módulo de Elasticidade , Reciclagem , Resistência à Tração
8.
Pharmaceutics ; 13(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34834366

RESUMO

In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the release of several drugs, while their framework can be enriched with specific therapeutic ions allowing to boost the tissue regeneration. However, due to the open and easily accessible mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer (LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated: in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and, successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach, alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid. Both copper ions and ibuprofen were co-released over time, showing a sustained release profile up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare MBG particles.

9.
ACS Appl Mater Interfaces ; 13(36): 43301-43313, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34474558

RESUMO

Dispersion of graphene and related materials in water is needed to enable sustainable processing of these 2D materials. In this work, we demonstrate the capability of branched polyethylenimine (BPEI) and polyacrylic acid (PAA) to stabilize reduced graphite oxide (rGO) dispersions in water. Atomic force microscopy colloidal probe measurements were carried out to investigate the interaction mechanisms between rGO and the polyelectrolytes (PEs). Our results show that for positive PEs, the interaction appears electrostatic, originating from the weak negative charge of graphene in water. For negative PEs, however, van der Waals forces may result in the formation of a PE shell on rGO. The PE-stabilized rGO dispersions were then used for the preparation of coatings to enhance gas barrier properties of polyethylene terephthalate films using the layer-by-layer self-assembly. Ten bilayers of rGOBPEI/rGOPAA resulted in coatings with excellent barrier properties as demonstrated by oxygen transmission rates below detection limits [<0.005 cm3/(m2 day atm)]. The observed excellent performance is ascribed to both the high density of the deposited coating and its efficient stratification. These results can enable the design of highly efficient gas barrier solutions for demanding applications, including oxygen-sensitive pharmaceutical products or flexible electronic devices.

10.
Carbohydr Polym ; 271: 118420, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364561

RESUMO

In this work, novel composite microparticles based on chitosan (CHI) and graphite nanoplatelets (GNP) were developed as 3D scaffolds for neuronal cells. The aim is to improve the scaffold strength while maintaining its ability to sustain cell adhesion and differentiation. An air-assisted jetting technique followed by physical crosslinking is employed to obtain CHI/GNP microparticles. Optical and Field Emission Scanning Electron Microscopy micrographs showed a uniform distribution of GNP within the CHI porous matrix. The presence of GNP turned out to improve the strength of the microparticles while conferring good electrical conductivity and ameliorating their stability in aqueous environment. The morphological and immunocytochemical characterization, combined with a preliminary electrophysiological analysis, evidenced the effectiveness of the developed composite microparticles as a scaffold for neuron growth. These scaffolds could be employed for the development of advanced 3D neuronal in vitro models for networks dynamics analysis and drug screening.


Assuntos
Quitosana/química , Grafite/química , Hidrogéis/química , Nanoestruturas/química , Neurônios/efeitos dos fármacos , Alicerces Teciduais/química , Módulo de Elasticidade , Condutividade Elétrica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Engenharia Tecidual/métodos
11.
Nanomaterials (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498492

RESUMO

The exploitation of self-assembled coatings comprising graphite oxide (GO) nanoplates has been recently demonstrated as a promising route to improve the fire safety of flexible polyurethane (PU) foams. However, limited knowledge has been gathered on the correlations between the physical and chemical properties of different GO grades and the performance obtained in this application. This work addresses the effects of the nanoparticle dimensions on the layer-by-layer (LbL) assembly and flame-retardant properties of GO-based coatings deposited on PU foams. To this aim, three GO bearing different lateral sizes and thicknesses were selected and LbL-assembled with chitosan (CHIT). Coating growth and morphology were evaluated by FTIR and FESEM, respectively. The resulting CHIT/GO assemblies were demonstrated to be capable of slowing down the combustion of the PU both in flammability and forced combustion tests. In addition, compressive stress/strain tests pointed out that the LbL-coated foams (22-24 kg/m3) could easily replace denser commercial PU foam (40-50 kg/m3) with weight reduction potentials in the transport field. These results are correlated with the properties of the employed GO. The production of assemblies characterized by a high density of CHIT/GO interfaces is identified as the main parameter controlling the FR efficiency and the mechanical properties of the coatings.

12.
ACS Sustain Chem Eng ; 6(11): 14340-14347, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30416891

RESUMO

In this work, the preparation of nanocomposites based on poly(l-lactide) PLLA and graphite nanoplatelets (GNP) was assessed by applying, for the first time, the reactive extrusion (REX) polymerization approach, which is considered a low environmental impact method to prepare polymer systems and which allows an easy scalability. In particular, ad hoc synthesized molecules, constituted by a pyrene end group and a poly(d-lactide) (PDLA) chain (Pyr-d), capable of interacting with the surface of GNP layers as well as forming stereoblocks during the ring-opening polymerization (ROP) of l-lactide, were used. The nanocomposites were synthesized by adding to l-lactide the GNP/initiator system, prepared by dispersing the graphite in the acetone/Pyr-d solution, which was dried after the sonication process. DSC and X-ray diffraction measurements evidenced the stereocomplexation of the systems synthesized by using the pyrene-based initiators, whose extent turned out to depend on the PDLA chain length. All the prepared nanocomposites, including those synthesized starting from a classical initiator, that is, 1-dodecanol, retained similar electrical conductivity, whereas the thermal conductivity was found to increase in the stereocomplexed samples. Preferential localization of stereocomplexed PLA close to the interface with GNP was demonstrated by scanning probe microscopy (SPM) techniques, supporting an important role of local crystallinity in the thermal conductivity of the nanocomposites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA