Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 454, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741158

RESUMO

BACKGROUND: Glycosylation is an enzyme-catalyzed post-translational modification that is distinct from glycation and is present on a majority of plasma proteins. N-glycosylation occurs on asparagine residues predominantly within canonical N-glycosylation motifs (Asn-X-Ser/Thr) although non-canonical N-glycosylation motifs Asn-X-Cys/Val have also been reported. Albumin is the most abundant protein in plasma whose glycation is well-studied in diabetes mellitus. However, albumin has long been considered a non-glycosylated protein due to absence of canonical motifs. Albumin contains two non-canonical N-glycosylation motifs, of which one was recently reported to be glycosylated. METHODS: We enriched abundant serum proteins to investigate their N-linked glycosylation followed by trypsin digestion and glycopeptide enrichment by size-exclusion or mixed-mode anion-exchange chromatography. Glycosylation at canonical as well as non-canonical sites was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of enriched glycopeptides. Deglycosylation analysis was performed to confirm N-linked glycosylation at non-canonical sites. Albumin-derived glycopeptides were fragmented by MS3 to confirm attached glycans. Parallel reaction monitoring was carried out on twenty additional samples to validate these findings. Bovine and rabbit albumin-derived glycopeptides were similarly analyzed by LC-MS/MS. RESULTS: Human albumin is N-glycosylated at two non-canonical sites, Asn68 and Asn123. N-glycopeptides were detected at both sites bearing four complex sialylated glycans and validated by MS3-based fragmentation and deglycosylation studies. Targeted mass spectrometry confirmed glycosylation in twenty additional donor samples. Finally, the highly conserved Asn123 in bovine and rabbit serum albumin was also found to be glycosylated. CONCLUSIONS: Albumin is a glycoprotein with conserved N-linked glycosylation sites that could have potential clinical applications.


Assuntos
Albuminas , Glicoproteínas , Glicosilação , Animais , Bovinos , Humanos , Albuminas/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida , Glicopeptídeos/metabolismo , Glicopeptídeos/química , Glicoproteínas/metabolismo , Glicoproteínas/química , Dados de Sequência Molecular , Espectrometria de Massas em Tandem
2.
J Am Soc Mass Spectrom ; 34(10): 2087-2092, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37657774

RESUMO

Although tandem mass tag (TMT)-based isobaric labeling has become a powerful approach for multiplexed protein quantitation, automating the workflow for this technique has not been easy to achieve for widespread adoption. This is because preparation of TMT-labeled peptide samples involves multiple steps ranging from protein extraction, denaturation, reduction, and alkylation to tryptic digestion, desalting, labeling, and cleanup, all of which require a high level of proficiency. The variability resulting from multiple processing steps is inherently problematic, especially with large-scale clinical studies that involve hundreds of samples where reproducibility is critical for quantitation. Here, we sought to compare the performance of a recently introduced platform, AccelerOme, for an automated proteomic workflow employing TMT labeling with the manual processing of samples. Cell pellets were prepared and subjected to a 16-plex experiment using an automated platform and a conventional manual protocol. Single-shot liquid chromatography with tandem mass spectrometry analysis revealed a higher number of proteins and peptides identified using the automated platform. Efficiency of tryptic digestion, alkylation, and TMT labeling were similar in both manual and automated processes. In addition, comparison of quantitation accuracy and precision showed similar performance in an automated workflow compared to manual sample preparation by an expert. Overall, we demonstrated that the automated platform performs at a level similar to a manual process performed by an expert for TMT-based proteomics. We anticipate that this automated workflow will increasingly replace manual pipelines and has the potential to be applied to large-scale TMT-based studies, providing robust results and high sample throughput.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Proteínas/química , Peptídeos , Proteoma/análise
3.
Analyst ; 148(15): 3466-3475, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395315

RESUMO

Although single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples. It has been demonstrated that modulating the ion flux in TIMS affects the overall performance of proteome profiling. However, the effect of TIMS settings on the analysis of low-input samples has been less investigated. Thus, we sought to optimize the conditions of TIMS with regard to ion accumulation/ramp times and ion mobility range for low-input samples. We observed that an ion accumulation time of 180 ms and monitoring a narrower ion mobility range from 0.7 to 1.3 V s cm-2 resulted in a substantial gain in the depth of proteome coverage and in detecting proteins with low abundance. We used these optimized conditions for proteome profiling of sorted human primary T cells, which yielded an average of 365, 804, 1116, and 1651 proteins from single, five, ten, and forty T cells, respectively. Notably, we demonstrated that the depth of proteome coverage from a low number of cells was sufficient to delineate several essential metabolic pathways and the T cell receptor signaling pathway. Finally, we showed the feasibility of detecting post-translational modifications including phosphorylation and acetylation from single cells. We believe that such an approach could be applied to label-free analysis of single cells obtained from clinically relevant samples.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional
4.
J Am Soc Mass Spectrom ; 34(7): 1225-1229, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267530

RESUMO

Laser capture microdissection (LCM) has become an indispensable tool for mass spectrometry-based proteomic analysis of specific regions obtained from formalin-fixed paraffin-embedded (FFPE) tissue samples in both clinical and research settings. Low protein yields from LCM samples along with laborious sample processing steps present challenges for proteomic analysis without sacrificing protein and peptide recovery. Automation of sample preparation workflows is still under development, especially for samples such as laser-capture microdissected tissues. Here, we present a simplified and rapid workflow using adaptive focused acoustics (AFA) technology for sample processing for high-throughput FFPE-based proteomics. We evaluated three different workflows: standard extraction method followed by overnight trypsin digestion, AFA-assisted extraction and overnight trypsin digestion, and AFA-assisted extraction simultaneously performed with trypsin digestion. The use of AFA-based ultrasonication enables automated sample processing for high-throughput proteomic analysis of LCM-FFPE tissues in 96-well and 384-well formats. Further, accelerated trypsin digestion combined with AFA dramatically reduced the overall processing times. LC-MS/MS analysis revealed a slightly higher number of protein and peptide identifications in AFA accelerated workflows compared to standard and AFA overnight workflows. Further, we did not observe any difference in the proportion of peptides identified with missed cleavages or deamidated peptides across the three different workflows. Overall, our results demonstrate that the workflow described in this study enables rapid and high-throughput sample processing with greatly reduced sample handling, which is amenable to automation.


Assuntos
Ensaios de Triagem em Larga Escala , Proteômica , Humanos , Fluxo de Trabalho , Proteômica/instrumentação , Proteômica/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/química
6.
Mol Neurodegener ; 18(1): 8, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721205

RESUMO

BACKGROUND: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain. Ectopic expression of TREM2-H157Y in HEK293 cells resulted in increased TREM2 shedding. However, the physiological outcomes of the TREM2 H157Y mutation remain unknown in the absence and presence of AD related pathologies. METHODS: We generated a novel Trem2 H157Y knock-in mouse model through CRISPR/Cas9 technology and investigated the effects of Trem2 H157Y on TREM2 proteolytic processing, synaptic function, and AD-related amyloid pathologies by conducting biochemical assays, targeted mass spectrometry analysis of TREM2, hippocampal electrophysiology, immunofluorescent staining, in vivo micro-dialysis, and cortical bulk RNA sequencing. RESULTS: Consistent with previous in vitro findings, Trem2 H157Y increases TREM2 shedding with elevated soluble TREM2 levels in the brain and serum. Moreover, Trem2 H157Y enhances synaptic plasticity without affecting microglial density and morphology, or TREM2 signaling. In the presence of amyloid pathology, Trem2 H157Y accelerates amyloid-ß (Aß) clearance and reduces amyloid burden, dystrophic neurites, and gliosis in two independent founder lines. Targeted mass spectrometry analysis of TREM2 revealed higher ratios of soluble to full-length TREM2-H157Y compared to wild-type TREM2, indicating that the H157Y mutation promotes TREM2 shedding in the presence of Aß. TREM2 signaling was further found reduced in Trem2 H157Y homozygous mice. Transcriptomic profiling revealed that Trem2 H157Y downregulates neuroinflammation-related genes and an immune module correlated with the amyloid pathology. CONCLUSION: Taken together, our findings suggest beneficial effects of the Trem2 H157Y mutation in synaptic function and in mitigating amyloid pathology. Considering the genetic association of TREM2 p.H157Y with AD risk, we speculate TREM2 H157Y in humans might increase AD risk through an amyloid-independent pathway, such as its effects on tauopathy and neurodegeneration which merit further investigation.


Assuntos
Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Humanos , Animais , Camundongos , Células HEK293 , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
7.
Autophagy ; 19(6): 1711-1732, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469690

RESUMO

The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.


Assuntos
Doença de Parkinson , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Ubiquitina/metabolismo
8.
ACS Omega ; 7(50): 46260-46276, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570296

RESUMO

Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.

9.
Phytopathology ; 112(5): 1103-1117, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35365054

RESUMO

Promoting seed decay is an ecological approach to reducing weed persistence in the soil seedbank. Previous work demonstrated that Fusarium avenaceum F.a.1 decays dormant Avena fatua (wild oat) caryopses and induces several defense enzyme activities in vitro. The objectives of this study were to obtain a global perspective of proteins expressed after F.a.1-caryopsis colonization by conducting proteomic evaluations on (i) leachates, soluble extrinsic (seed-surface) proteins released upon washing caryopses in buffer and (ii) proteins extracted from whole caryopses; interactions with aluminum (Al) were also evaluated in the latter study because soil acidification and associated metal toxicity are growing problems. Of the 119 leachate proteins classified as defense/stress, 80 were induced or repressed. Defense/stress proteins were far more abundant in A. fatua (35%) than in F.a.1 (12%). Avena defense/stress proteins were also the most highly regulated category, with 30% induced and 35% repressed by F.a.1. Antifungal proteins represented 36% of Avena defense proteins and were the most highly regulated, with 36% induced and 37% repressed by F.a.1. These results implicate selective regulation of Avena defense proteins by F.a.1. Fusarium proteins were also highly abundant in the leachates, with 10% related to pathogenicity, 45% of which were associated with host cell wall degradation. In whole caryopsis extracts, fungal colonization generally resulted in induction of a similar set of Avena proteins in the presence and absence of Al. Results advance the hypothesis that seed decay pathogens elicit intricate and dynamic biochemical responses in dormant seeds.


Assuntos
Avena , Fusarium , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas , Proteoma , Proteômica , Sementes/fisiologia , Solo
10.
Am J Kidney Dis ; 79(6): 904-908, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34508832

RESUMO

Tubular basement membrane (TBM) deposits are very uncommon in non-lupus membranous nephropathy. We report 5 patients with membranous nephropathy and extensive TBM deposits following allogeneic hematopoietic cell transplant. Patients presented with nephrotic syndrome (3 also had acute kidney injury) late post-transplant in association with chronic graft-versus-host disease (cGVHD). Kidney biopsies revealed global subepithelial and extensive TBM immune complex deposits, accompanied by acute tubular injury (n = 4) and tubulointerstitial inflammation (n = 4). Proteomic analysis of glomeruli in 4 cases identified PLA2R in 1, with no significant protein spectra for PLA2R, THSD7A, EX1/2, NELL-1, PCDH7, NCAM1, or SEMA3B detected in the remaining 3. On follow-up (for a mean 42 months), 4 patients had complete and 1 partial remission following prednisone and/or rituximab therapy. We propose that membranous nephropathy with extensive TBM deposits is a distinctive clinicopathologic lesion associated with allogeneic hematopoietic cell transplant. Pathogenesis likely involves cGVHD-driven antibodies against glomerular and TBM components, the identity of which remains to be elucidated.


Assuntos
Injúria Renal Aguda , Glomerulonefrite Membranosa , Transplante de Células-Tronco Hematopoéticas , Membrana Basal/patologia , Glomerulonefrite Membranosa/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Poliésteres , Proteômica
11.
Cancers (Basel) ; 13(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572755

RESUMO

Novel therapeutic strategies are needed for the treatment of rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. By using a combination of cell surface proteomics and transcriptomic profiling of RMS and normal muscle, we generated a catalog of targetable cell surface proteins enriched in RMS tumors. Among the top candidates, we identified B7-H3 as the major immunoregulatory molecule expressed by RMS tumors. By using a large cohort of tissue specimens, we demonstrated that B7-H3 is expressed in a majority of RMS tumors while not detected in normal human tissues. Through a deconvolution analysis of the RMS tumor RNA-seq data, we showed that B7-H3-rich tumors are enriched in macrophages M1, NK cells, and depleted in CD8+-T cells. Furthermore, in vitro functional assays showed that B7-H3 knockout in RMS tumor cells increases T-cell mediated cytotoxicity. Altogether, our study uncovers new potential targets for the treatment of RMS and provides the first biological insights into the role of B7-H3 in RMS biology, paving the way for the development of next-generation immunotherapies.

12.
EBioMedicine ; 69: 103465, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34229274

RESUMO

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Assuntos
Teste Sorológico para COVID-19/métodos , Imunoensaio/métodos , Espectrometria de Massas/métodos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Automação Laboratorial/métodos , Automação Laboratorial/normas , Teste Sorológico para COVID-19/normas , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Humanos , Imunoensaio/normas , Aprendizado de Máquina , Espectrometria de Massas/normas , Fosfoproteínas/química , Fosfoproteínas/imunologia , Sensibilidade e Especificidade
13.
J Am Soc Nephrol ; 32(3): 695-706, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33478971

RESUMO

BACKGROUND: In patients with secondary (autoimmune) membranous nephropathy, two novel proteins, Exostosin 1 and Exostosin 2 (EXT1/EXT2), are potential disease antigens, biomarkers, or both. In this study, we validate the EXT1/EXT2 findings in a large cohort of membranous lupus nephritis. METHODS: We conducted a retrospective cohort study of patients with membranous lupus nephritis, and performed immunohistochemistry studies on the kidney biopsy specimens against EXT1 and EXT2. Clinicopathologic features and outcomes of EXT1/EXT2-positive versus EXT1/EXT2-negative patients were compared. RESULTS: Our study cohort included 374 biopsy-proven membranous lupus nephritis cases, of which 122 (32.6%) were EXT1/EXT2-positive and 252 (67.4%) were EXT1/EXT2-negative. EXT1/EXT2-positive patients were significantly younger (P=0.01), had significantly lower serum creatinine levels (P=0.02), were significantly more likely to present with proteinuria ≥3.5 g/24 h (P=0.009), and had significantly less chronicity features (glomerulosclerosis, P=0.001 or interstitial fibrosis and tubular atrophy, P<0.001) on kidney biopsy. Clinical follow-up data were available for 160 patients, of which 64 (40%) biopsy results were EXT1/EXT2-positive and 96 (60%) were EXT1/EXT2-negative. The proportion of patients with class 3/4 lupus nephritis coexisting with membranous lupus nephritis was not different between the EXT1/EXT2-positive and EXT1/EXT2-negative groups (25.0% versus 32.3%; P=0.32). The patients who were EXT1/EXT2-negative evolved to ESKD faster and more frequently compared with EXT1/EXT2-positive patients (18.8% versus 3.1%; P=0.003). CONCLUSIONS: The prevalence of EXT1/EXT2 positivity was 32.6% in our cohort of membranous lupus nephritis. Compared with EXT1/EXT2-negative membranous lupus nephritis, EXT1/EXT2-positive disease appears to represent a subgroup with favorable kidney biopsy findings with respect to chronicity indices. Cases of membranous lupus nephritis that are EXT1/EXT2-negative are more likely to progress to ESKD compared with those that are EXT1/EXT2-positive.


Assuntos
Glomerulonefrite Membranosa/metabolismo , Nefrite Lúpica/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Adulto , Biomarcadores/metabolismo , Estudos de Coortes , Progressão da Doença , Feminino , Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Falência Renal Crônica/imunologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos
14.
Tissue Eng Part A ; 27(3-4): 237-245, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32640938

RESUMO

Craniofacial reconstruction of critical bone defects typically requires a bone graft. As graft availability may be restricted by disease or comorbidities, tissue engineering approaches are actively sought. The pericranium could provide new bone graft material. During development and repair, bone transitions through a chondrogenic phase. However, with tissue engineering, pluripotent cells can differentiate directly into bone cells. Does ability to recapitulate bone formation in vitro affect osteogenesis and vascularization of pericranium grafts? To answer this, we obtained tissue from nine patients with preplanned craniotomy surgery and studied three-dimensional osteogenesis and angiogenesis of pericranium-derived spheroids. First, we established growth and differentiation conditions on Matrigel. For each spheroid sample, we investigated (i) continuous osteogenic differentiation (COD) and (ii) osteogenic differentiation preceded by chondrogenesis (CD → OD). The effect of vascular endothelial growth factor (VEGF) was compared to VEGF supplemented with fibroblast growth factor, interleukin (IL)-1, IL-6, platelet-derived growth factor, and tumor necrosis factor-α, a growth factor mix (GFM) with possible synergistic effects. In this limited sample, we observed no age- or sex-related differences in cell expansion. Similarly, no statistically significant differences in osteogenic or angiogenic scores between COD or CD → OD spheroids were noted with regular media. In COD, however, VEGF statistically significantly increased angiogenesis compared to control media (p = 0.007). Also, in COD, both VEGF and VEGF + GFM increased osteogenesis (p = 0.047 and p = 0.038, respectively). By contrast, in CD → OD, neither VEGF nor VEGF + GFM yielded statistically significant angiogenesis or osteogenesis scores compared to control media. To understand these results, we characterized spheroid protein expression by nanoliquid chromatography coupled to tandem mass spectrometry. Nine angiogenic proteins were either uniquely expressed or upregulated in COD compared to CD → OD: (i) endothelial markers JUP, PTGIS, PTGS2, and TYMP, (ii) tissue remodeling factors CHI3L1 and MMP14, and (iii) metabolic pathways modulators ANGPTL4, ITGA5, and WNT5A. ANGPTL4, ITGA5, PTGIS, PTGS2, and WNT5A define a conserved angiogenic network and were >2-fold increased in VEGF compared to VEGF + GFM. Finally, we examined bone formation on printable poly-(propylene-fumarate) (PPF) scaffolds for individualized grafting. Under COD + VEGF conditions, PPF scaffolds loaded with pericranium-derived cells displayed hallmarks of spongiform-like bone formation. Thus, the human pericranium may be a potential repository for bone-generating cells with applications in craniofacial bone repair using tissue printing.


Assuntos
Osteogênese , Fator A de Crescimento do Endotélio Vascular , Diferenciação Celular , Condrogênese , Humanos , Neovascularização Fisiológica , Fatores de Crescimento do Endotélio Vascular
15.
Sci Rep ; 10(1): 1500, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001768

RESUMO

The polycystin-1 (PC1), polycystin-2 (PC2) and fibrocystin proteins, the respective products of the PKD1, PKD2 and PKHD1 genes, are abundant in urinary exosome-like vesicles (ELVs) where they form the polycystin complex (PCC). ELVs are 100 nm diameter membrane vesicles shed into the urine by the cells lining the nephron. Using MS/MS analysis of ELVs from individuals with PKD1 mutations and controls, we show that in addition to the well-described GPS/GAIN cleavage event in PC1 at 3048 aa and the proprotein convertase cleavage (PPC) event in fibrocystin at 3616 aa, there are multiple other cleavage events in these proteins. The C-terminal 11 transmembrane portion of PC1 undergoes three cleavage events in vivo. The absence of peptides from the C-terminal cytoplasmic tail of fibrocystin implies a cleavage event close to its single TM domain prior to loading onto the ELVs. There is also evidence that the C-terminal tail of PC2 is also cleaved in ELVs. Native gel analysis of the PCC shows that the entire complex is  > 2 MDa in size and that N-terminal GPS/GAIN cleaved PC1 and PPC cleaved fibrocystin ectodomains can be released under non-reducing conditions and resolve at 300 kDa. This paper shows that the three major human cystogene proteins are detectable in human urinary ELVs and that all three undergo post-translational proteolytic processing. Human urinary ELVs may be a useful source of material in the search for proteins that interact with the PCC.


Assuntos
Receptores de Superfície Celular/análise , Canais de Cátion TRPP/urina , Sequência de Aminoácidos , Exossomos/química , Glicosilação , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/urina , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/urina , Proteólise , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
16.
J Am Soc Nephrol ; 30(6): 1123-1136, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061139

RESUMO

BACKGROUND: In membranous nephropathy (MN), which is characterized by deposition of immune complexes along the glomerular basement membrane (GBM), phospholipase A2 receptor (PLA2R) and thrombospondin type 1 domain-containing 7A are target antigens in approximately 70% and 1%-5% of cases of primary MN, respectively. In other cases of primary MN and in secondary MN, the target antigens are unknown. METHODS: We studied 224 cases of biopsy-proven PLA2R-negative MN and 102 controls (including 47 cases of PLA2R-associated MN) in pilot and discovery cohorts. We also evaluated 48 cases of PLA2R-negative presumed primary MN and lupus MN in a validation cohort. We used laser microdissection and mass spectrometry to identify new antigens, which were localized by immunohistochemistry. RESULTS: Mass spectrometry detected exostosin 1 (EXT1) and exostosin 2 (EXT2) in 21 cases of PLA2R-negative MN, but not in PLA2R-associated MN and control cases. Immunohistochemistry staining revealed bright granular GBM staining for EXT1 and EXT2. Clinical and biopsy findings showed features of autoimmune disease, including lupus, in 80.7% of the 26 EXT1/EXT2-associated MN cases we identified. In the validation cohort, we confirmed that EXT1/EXT2 staining was detected in pure class 5 lupus nephritis (eight of 18 patients) and in presumed primary MN associated with signs of autoimmunity (three of 16 patients); only one of the 14 cases of mixed class 5 and 3/4 lupus nephritis was positive for EXT1/EXT2. Tests in seven patients with EXT1/EXT2-associated MN found no circulating anti-exostosin antibodies. CONCLUSIONS: A subset of MN is associated with accumulation of EXT1 and EXT2 in the GBM. Autoimmune disease is common in this group of patients.


Assuntos
Glomerulonefrite Membranosa/imunologia , Glomerulonefrite Membranosa/patologia , N-Acetilglucosaminiltransferases/imunologia , Receptores da Fosfolipase A2/metabolismo , Adulto , Autoanticorpos/imunologia , Biópsia por Agulha , Western Blotting , Estudos de Casos e Controles , Progressão da Doença , Feminino , Seguimentos , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Projetos Piloto , Valores de Referência , Medição de Risco , Índice de Gravidade de Doença
17.
BMC Res Notes ; 11(1): 666, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208918

RESUMO

OBJECTIVES: Rabbit adipose mesenchymal stem cells were used for the purpose of studying acquisition of the chondrogenic phenotype over time at 1, 14 and 28 days after in vitro incubation with differentiation media, using nano-liquid chromatography electrospray ionization tandem mass spectrometry analysis. This was part of a preliminary study of the behavior of differentiated adipose stem cells for use in a rabbit model of laryngoplasty. DATA DESCRIPTION: The data comprise .MGF, .RAW, .MZID, and .XLSX, lists of peaks, peptides and proteins identified by nano-flow liquid chromatography electrospray ionization tandem mass spectrometry analysis upon incubation with non-differentiating (ND) or chondrogenic differentiating (CHD) media (ProteomeXchange ID PXD010236). XLSX files contain the following information: day 1 CT (control, N = 3499 proteins), day 14 ND (N = 3106 proteins), day 28 ND (N = 3116 proteins), day 14 CHD (N = 2901 proteins), and day 28 CHD (N = 2876 proteins). Proteins are characterized with respect to their - 10lgP value, percent coverage, number of total as well as unique peptides after trypsin digestion, derivatization method (carbamidomethylation, oxidation, or combined carbamidomethylation + oxidation), average mass, and include a full description.


Assuntos
Diferenciação Celular , Condrogênese , Espectrometria de Massas , Células-Tronco Mesenquimais/fisiologia , Animais , Fenótipo , Coelhos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
18.
Laryngoscope ; 128(12): E402-E408, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30208202

RESUMO

OBJECTIVES/HYPOTHESIS: Vocal fold (VF) paralysis by sectioning the recurrent laryngeal nerve dramatically impacts the life of thyroidectomy patients. Volume-expanding materials can temporarily restore VF medialization. To prolong this benefit, adipose mesenchymal stem cells (ADSCs) and micronized acellular dermis (MACD) were co-injected in a rabbit model of injection medialization laryngoplasty. Biomarkers of in situ proliferation were identified by mass spectrometry proteomics and pathway analysis to guide future efforts to increase the length of benefit. METHODS: ADSCs were expanded and/or differentiated into chondrocytes (CHON) as collagen microspheres. After VF paralysis rabbits received MACD, MACD + undifferentiated ADSC, or MACD+CHON, ADSCs differentiated into chondrocytes. After 12 weeks, animals were sacrificed and 5-µm paraffin-embedded cryosections were prepared from larynges for hematoxylin and eosin visualization and nanoflow liquid chromatography electrospray-ionization tandem-mass spectrometry analysis of tissue collections. Validated proteins were processed by Venn subtraction and gene ontology (GO) overrepresentation analysis to identify unique pathways and biomarkers. RESULTS: Confirmed proteins numbered 147 (MACD), 1,243 (MACD+ADSC), and 1,033 (MACD+CHON). Totally, 333 proteins were uniquely found in the MACD+ADSC group, including mesenchymal surface markers CD9, CD44, fibronectin, and vimentin. Over 70% of proteins belonged to catalytic activity and binding GO categories, with the histone (H) family being overrepresented (P < 0.05). Histone variants H3.3, H2A.V, and H2A.Z (associated with open chromatin states) were overrepresented in the MACD+ADSC group, whereas structural histones H2A, H2B, and H4 were not. CONCLUSION: Biomarkers, including atypical histones, are associated with in vivo proliferation of ADSCs and an expanded VF medialization volume. LEVEL OF EVIDENCE: NA Laryngoscope, 128:E402-E408, 2018.


Assuntos
Histonas/análise , Laringoplastia/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Prega Vocal/citologia , Derme Acelular/metabolismo , Animais , Biomarcadores/análise , Diferenciação Celular/genética , Proliferação de Células/genética , Condrócitos , Colágeno , Injeções , Espectrometria de Massas , Proteômica , Coelhos , Nervo Laríngeo Recorrente/citologia , Transdução de Sinais/genética , Paralisia das Pregas Vocais/etiologia , Paralisia das Pregas Vocais/prevenção & controle
19.
Cytotherapy ; 19(12): 1426-1437, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29037943

RESUMO

BACKGROUND AIMS: Light chain (AL) amyloidosis is a protein misfolding disease characterized by extracellular deposition of immunoglobulin light chains (LC) as amyloid fibrils. Patients with LC amyloid involvement of the heart have the worst morbidity and mortality. Current treatments target the plasma cells to reduce further production of amyloid proteins. There is dire need to understand the mechanisms of cardiac tissue damage from amyloid to develop novel therapies. We recently reported that LC soluble and fibrillar species cause apoptosis and inhibit cell growth in human cardiomyocytes. Mesenchymal stromal cells (MSCs) can promote wound healing and tissue remodeling. The objective of this study was to evaluate MSCs to protect cardiomyocytes affected by AL amyloid fibrils. METHODS: We used live cell imaging and proteomics to analyze the effect of MSCs in the growth arrest caused by AL amyloid fibrils. RESULTS: We evaluated the growth of human cardiomyocytes (RFP-AC16 cells) in the presence of cytotoxic LC amyloid fibrils. MSCs reversed the cell growth arrest caused by LC fibrils. We also demonstrated that this effect requires cell contact and may be mediated through paracrine factors modulating cell adhesion and extracellular matrix remodeling. To our knowledge, this is the first report of MSC protection of human cardiomyocytes in amyloid disease. CONCLUSIONS: This important proof of concept study will inform future rational development of MSC therapy in cardiac LC amyloid.


Assuntos
Amiloide/toxicidade , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/patologia , Amiloide/metabolismo , Apoptose , Células Cultivadas , Técnicas de Cocultura , Humanos , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/terapia , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
20.
J Biol Chem ; 292(37): 15277-15286, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760828

RESUMO

The aberrant accumulation of tau protein is a pathological hallmark of a class of neurodegenerative diseases known as tauopathies, including Alzheimer's disease and related dementias. On the basis of previous observations that tau is a direct substrate of histone deacetylase 6 (HDAC6), we sought to map all HDAC6-responsive sites in tau and determine how acetylation in a site-specific manner affects tau's biophysical properties in vitro Our findings indicate that several acetylation sites in tau are responsive to HDAC6 and that acetylation on Lys-321 (within a KCGS motif) is both essential for acetylation-mediated inhibition of tau aggregation in vitro and a molecular tactic for preventing phosphorylation on the downstream Ser-324 residue. To determine the functional consequence of this HDAC6-regulated phosphorylation event, we examined tau's ability to promote microtubule assembly and found that phosphorylation of Ser-324 interferes with the normal microtubule-stabilizing function of tau. Tau phosphorylation of Ser-324 (pSer-324) has not previously been evaluated in the context of tauopathy, and here we observed increased deposition of pSer-324-positive tau both in mouse models of tauopathy and in patients with Alzheimer's disease. These findings uncover a novel acetylation-phosphorylation switch at Lys-321/Ser-324 that coordinately regulates tau polymerization and function. Because the disease relevance of this finding is evident, additional studies are needed to examine the role of pSer-324 in tau pathobiology and to determine whether therapeutically modulating this acetylation-phosphorylation switch affects disease progression in vivo.


Assuntos
Doença de Alzheimer/metabolismo , Histona Desacetilases/metabolismo , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Tauopatias/metabolismo , Proteínas tau/metabolismo , Acetilação/efeitos dos fármacos , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Feminino , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Lisina/metabolismo , Masculino , Camundongos Transgênicos , Mutação , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Serina/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/patologia , Bancos de Tecidos , Proteínas tau/química , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA