Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1156: 87-106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214271

RESUMO

A new species of the carabid beetle genus Bembidion Latreille is described from the Central Valley, Los Angeles Basin, and surrounding areas of California. Bembidionbrownorumsp. nov. is a distinctive species, a relatively large member of the subgenus Notaphus Dejean, and within Notaphus a member of the B.obtusangulum LeConte species group. It has faint spots on the elytra and a large, convex, rounded prothorax. Of the 22 specimens from 11 localities, all but one were collected more than 55 years ago. Although the collection of the holotype in 2021 at UV light suggest the species is still extant, the lack of other recent specimens suggests the species may have a more restricted distribution than in the past, and its populations may be in decline.

2.
Zookeys ; 1044: 339-373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512089

RESUMO

The Australian genus Theprisa Moore, 1963, is taxonomically revised to comprise five species, two newly described: Theprisadarlingtoni Liebherr & Porch, sp. nov. of Tasmania, and Theprisaotway Liebherr, Porch & Maddison, sp. nov. from the Otway Ranges, Victoria. Two previously described species, T.australis (Castelnau) and T.montana (Castelnau), are distributed in the mountains of Victoria. The third previously described species, T.convexa (Sloane) is found in Tasmania. A lectotype is designated for T.convexa because the various syntypes are ambiguously labelled. Cladistic analysis based on morphological characters establishes monophyly of Theprisa relative to the Australian genera Sitaphe Moore and Spherita Liebherr. This and a second clade of Australian genera (Pterogmus Sloane, Thayerella Baehr, and Neonomius Moore) do not form a natural group, but are cladistically interdigitated among two monophyletic New Zealand lineages (Tarastethus Sharp, and Trichopsida Larochelle and Larivière) suggesting substantial trans-Tasman diversification among these groups. Hypothesized relationships within Theprisa are consistent with two bouts of speciation involving the Bass Strait; an initial event establishing T.convexa as adelphotaxon to the other four species, and a more recent event establishing the sister species T.darlingtoni and T.montana. Geographic restriction of T.otway to the Otway Ranges is paralleled by Otway endemics in several other carabid beetle genera, as well as by endemics in numerous other terrestrial arthropod taxa. Whereas these numerous Otway endemics support the distinctive nature of the Otway Range fauna, their biogeographic relationships are extremely varied, illustrating that the Otways have accrued their distinctive biodiversity via various means.

3.
Zookeys ; 1044: 41-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183875

RESUMO

The phylogeny of the carabid beetle supertribe Nebriitae is inferred from analyses of DNA sequence data from eight gene fragments including one nuclear ribosomal gene (28S), four nuclear-protein coding genes (CAD, topoisomerase 1, PEPCK, and wingless), and three mitochondrial gene fragments (16S + tRNA-Leu + ND1, COI ("barcode" region) and COI ("Pat/Jer" region)). Our taxon sample included 264 exemplars representing 241 species and subspecies (25% of the known nebriite fauna), 39 of 41 currently accepted genera and subgenera (all except Notiokasis and Archileistobrius), and eight outgroup taxa. Separate maximum likelihood (ML) analyses of individual genes, combined ML analyses of nuclear, nuclear protein-coding, and mitochondrial genes, and combined ML and Bayesian analyses of the eight-gene-fragment matrix resulted in a well-resolved phylogeny of the supertribe, with most nodes in the tree strongly supported. Within Nebriitae, 167 internal nodes of the tree (out of the maximum possible 255) are supported by maximum-likelihood bootstrap values of 90% or more. The tribes Notiophilini, Opisthiini, Pelophilini, and Nebriini are well supported as monophyletic but relationships among these are not well resolved. Nippononebria is a distinct genus more closely related to Leistus than Nebria. Archastes, Oreonebria, Spelaeonebria, and Eurynebria, previously treated as distinct genera by some authors, are all nested within a monophyletic genus Nebria. Within Nebria, four major clades are recognized: (1) the Oreonebria Series, including eight subgenera arrayed in two subgeneric complexes (the Eonebria and Oreonebria Complexes); (2) the Nebriola Series, including only subgenus Nebriola; (3) the Nebria Series, including ten subgenera arrayed in two subgeneric complexes, the Boreonebria and Nebria Complexes, with the latter further subdivided into three subgeneric subcomplexes (the Nebria, Epinebriola, and Eunebria Subcomplexes)); and (4) the Catonebria Series, including seven subgenera arrayed in two subgeneric complexes (the Reductonebria and Catonebria Complexes). A strong concordance of biogeography with the inferred phylogeny is noted and some evident vicariance patterns are highlighted. A revised classification, mainly within the Nebriini, is proposed to reflect the inferred phylogeny. Three genus-group taxa (Nippononebria, Vancouveria and Archastes) are given revised status and seven are recognized as new synonymies (Nebriorites Jeannel, 1941 and Marggia Huber, 2014 = Oreonebria Daniel, 1903; Pseudonebriola Ledoux & Roux, 1989 = Boreonebria Jeannel, 1937; Patrobonebria Bänninger, 1923, Paranebria Jeannel, 1937 and Barbonebriola Huber & Schmidt, 2017 = Epinebriola Daniel & Daniel, 1904; and Asionebria Shilenkov, 1982 = Psilonebria Andrewes, 1923). Six new subgenera are proposed and described for newly recognized clades: Parepinebriola Kavanaugh subgen. nov. (type species: Nebria delicata Huber & Schmidt, 2017), Insulanebria Kavanaugh subgen. nov. (type species: Nebria carbonaria Eschscholtz, 1829), Erwinebria Kavanaugh subgen. nov. (type species Nebria sahlbergii Fischer von Waldheim, 1828), Nivalonebria Kavanaugh subgen. nov. (type species: Nebria paradisi Darlington, 1931), Neaptenonebria Kavanaugh subgen. nov. (type species: Nebria ovipennis LeConte, 1878), and Palaptenonebria Kavanaugh subgen. nov. (type species: Nebria mellyi Gebler, 1847). Future efforts to better understand relationships within the supertribe should aim to expand the taxon sampling of DNA sequence data, particularly within subgenera Leistus and Evanoleistus of genus Leistus and the Nebria Complex of genus Nebria.

4.
Zookeys ; 1044: 153-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34183876

RESUMO

The genus Tasmanitachoides Erwin, a genus of very small carabid beetle endemic to Australia, is reviewed. Although uncommon in collections, they can be abundant and diverse on banks of fine gravel or coarse sand next to bodies of fresh water; samples from southeastern Australia suggest numerous undescribed species. An initial phylogenetic hypothesis for the genus is presented, including 19 of the 32 known species. The inferred phylogeny, based upon one mitochondrial and four nuclear genes, shows the kingi group to be sister to remaining Tasmanitachoides, with the wattsensis group and T. lutus (Darlington) also being phylogenetically isolated. Two new species are described: T. baehri sp. nov., from the Australian Capital Territory, is a member of the kingi group; T. erwini sp. nov., from Tasmania, is a member of the wattsensis group. Identification tools for described and some undescribed species are presented, including photographs of all known species.

5.
G3 (Bethesda) ; 10(9): 3047-3060, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32601059

RESUMO

Measuring genome size across different species can yield important insights into evolution of the genome and allow for more informed decisions when designing next-generation genomic sequencing projects. New techniques for estimating genome size using shallow genomic sequence data have emerged which have the potential to augment our knowledge of genome sizes, yet these methods have only been used in a limited number of empirical studies. In this project, we compare estimation methods using next-generation sequencing (k-mer methods and average read depth of single-copy genes) to measurements from flow cytometry, a standard method for genome size measures, using ground beetles (Carabidae) and other members of the beetle suborder Adephaga as our test system. We also present a new protocol for using read-depth of single-copy genes to estimate genome size. Additionally, we report flow cytometry measurements for five previously unmeasured carabid species, as well as 21 new draft genomes and six new draft transcriptomes across eight species of adephagan beetles. No single sequence-based method performed well on all species, and all tended to underestimate the genome sizes, although only slightly in most samples. For one species, Bembidion sp. nr. transversale, most sequence-based methods yielded estimates half the size suggested by flow cytometry.


Assuntos
Besouros , Animais , Besouros/genética , Citometria de Fluxo , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala
6.
J Morphol ; 281(8): 862-892, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557896

RESUMO

The beetle family Carabidae, with about 40,000 species, exhibits enough diversity in sperm structure and behavior to be an excellent model system for studying patterns and processes of evolution. We explore their potential, documenting sperm form in 177 species of ground beetles using light microscopy and collecting data on one qualitative and seven quantitative phenotypic traits. Our sampling captures 61% of the tribal-level diversity of ground beetles. These data highlight the notable morphological diversity of sperm in ground beetles and suggest that sperm in the group have dynamic evolutionary histories with much morphological innovation and convergence. Sperm vary among species in total length (48-3,400 µm), head length (0.5-270 µm), and head width (0.2-6.3 µm). Most ground beetles make sperm with heads that are indistinct from the flagella at the gross morphological level. However, some or all Omophron, Trachypachus, and Dyschiriini make broad-headed sperm that show morphological differences between species. Most ground beetles package their sperm into groups of sperm, termed conjugates, and ground beetles show variation in conjugate form and in the number and arrangement of sperm in a conjugate. Most ground beetles make sperm conjugates by embedding their sperm in a hyaline rod or spermatostyle. The spermatostyle is remarkably variable among species and varies in length from 17 to 41,000 µm. Several unrelated groups of ground beetles make only singleton sperm, including Nebriinae, Cicindelinae, many Trechinae, and the tribe Paussini. In order to study patterns in sperm evolution, we combine these data with a low-resolution phylogeny of ground beetles. Results from modern comparative analyses suggest the following: (a) sperm differ from conjugates in some aspect of their underlying evolutionary process, (b) sperm have influenced conjugate evolution and vice versa, and (c) conjugation with a spermatostyle likely evolved early within the history of Carabidae and it has been lost independently at least three times.


Assuntos
Evolução Biológica , Besouros/anatomia & histologia , Besouros/fisiologia , Espermatozoides/fisiologia , Análise de Variância , Animais , Feminino , Genitália Feminina/anatomia & histologia , Masculino , Modelos Biológicos , Fenótipo , Filogenia , Análise de Componente Principal , Característica Quantitativa Herdável , Cabeça do Espermatozoide/fisiologia
7.
Syst Biol ; 69(6): 1137-1148, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267949

RESUMO

Genome architecture is a complex, multidimensional property of an organism defined by the content and spatial organization of the genome's component parts. Comparative study of entire genome architecture in model organisms is shedding light on mechanisms underlying genome regulation, evolution, and diversification, but such studies require costly analytical approaches which make extensive comparative study impractical for most groups. However, lower-cost methods that measure a single architectural component (e.g., distribution of one class of repeats) have potential as a new data source for evolutionary studies insofar as that measure correlates with more complex biological phenomena, and for which it could serve as part of an explanatory framework. We investigated copy number variation (CNV) profiles in ribosomal DNA (rDNA) as a simple measure reflecting the distribution of rDNA subcomponents across the genome. We find that signatures present in rDNA CNV profiles strongly correlate with species boundaries in the breve species group of Bembidion, and vary across broader taxonomic sampling in Bembidion subgenus Plataphus. Profiles of several species show evidence of re-patterning of rDNA-like sequences throughout the genome, revealing evidence of rapid genome evolution (including among sister pairs) not evident from analysis of traditional data sources such as multigene data sets. Major re-patterning of rDNA-like sequences has occurred frequently within the evolutionary history of Plataphus. We confirm that CNV profiles represent an aspect of genomic architecture (i.e., the linear distribution of rDNA components across the genome) via fluorescence in-situ hybridization. In at least one species, novel rDNA-like elements are spread throughout all chromosomes. We discuss the potential of copy number profiles of rDNA, or other repeats, as a low-cost tool for incorporating signal of genomic architecture variation in studies of species delimitation and genome evolution. [Bembidion; Carabidae; copy number variation profiles; rapid genome evolution; ribosomal DNA; species delimitation.].


Assuntos
Besouros/classificação , Besouros/genética , Evolução Molecular , Genoma de Inseto/genética , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Especiação Genética , Filogenia , Especificidade da Espécie
8.
Zookeys ; 925: 1-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32317852

RESUMO

The systematics of sitticine jumping spiders is reviewed, with a focus on the Palearctic and Nearctic regions, in order to revise their generic classification, clarify the species of one region (Canada), and study their chromosomes. A genome-wide molecular phylogeny of 23 sitticine species, using more than 700 loci from the arachnid Ultra-Conserved Element (UCE) probeset, confirms the Neotropical origins of sitticines, whose basal divergence separates the new subtribeAillutticina (a group of five Neotropical genera) from the subtribe Sitticina (five genera of Eurasia and the Americas). The phylogeny shows that most Eurasian sitticines form a relatively recent and rapid radiation, which we unite into the genus Attulus Simon, 1868, consisting of the subgenera Sitticus Simon, 1901 (seven described species), Attulus (41 described species), and Sittilong Prószynski, 2017 (one species). Five species of Attulus occur natively in North America, presumably through dispersals back from the Eurasian radiation, but an additional three species were more recently introduced from Eurasia. Attus palustris Peckham & Peckham, 1883 is considered to be a full synonym of Euophrys floricola C. L. Koch, 1837 (not a distinct subspecies). Attus sylvestris Emerton, 1891 is removed from synonymy and recognized as a senior synonym of Sitticus magnus Chamberlin & Ivie, 1944. Thus, the five native Attulus in North America are Attulus floricola, A. sylvestris, A. cutleri, A. striatus, and A. finschi. The other sitticines of Canada and the U.S.A. are placed in separate genera, all of which arose from a Neotropical radiation including Jollas Simon, 1901 and Tomis F.O.Pickard-Cambridge, 1901: (1) Attinella Banks, 1905 (A. dorsata, A. concolor, A. juniperi), (2) Tomis (T. welchi), and (3) Sittisax Prószynski, 2017 (S. ranieri). All Neotropical and Caribbean "Sitticus" are transferred to either Jollas (12 species total) or Tomis (14 species). Attinella (three species) and Tomis are both removed from synonymy with Sitticus; the synonymy of Sitticus cabellensis Prószynski, 1971 with Pseudattulus kratochvili Caporiacco, 1947 is restored; Pseudattulus Caporiacco, 1947 is synonymized with Tomis. Six generic names are newly synonymized with Attulus and one with Attinella. Two Neotropical species are described as new, Jollas cupreus sp. nov. and Tomis manabita sp. nov. Forty-six new combinations are established and three are restored. Three species synonymies are restored, one is new, and two are rejected. Across this diversity of species is a striking diversification of chromosome complements, with X-autosome fusions occurring at least four times to produce neo-Y sex chromosome systems (X1X2Y and X1X2X3Y), some of which (Sittisax ranieri and S. saxicola) are sufficiently derived as to no longer preserve the simple traces of ancestral X material. The correlated distribution of neo-Y and a base autosome number of 28 suggests that neo-Y origins occurred preferentially in lineages with the presence of an extra pair of autosomes.

9.
Zookeys ; 927: 65-74, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341675

RESUMO

The enigmatic beetle tribe Nototylini (Carabidae) is revised and a key to species is provided. Two species from South America are included in the genus. One species, Nototylus fryi (Schaum), is reviewed and a second, Nototylus balli Erwin & Kavanaugh, sp. nov., is described as new. Each species is known from a single specimen, neither of which is in good condition. The possible function of what appears to be a unique antennal grooming structure on the front femur is discussed.


ResumenLa tribu enigmática de escarabajos Nototylini (Carabidae) se revisa y se provee una clave para las especies. Dos especies de América del Sur están incluidas bajo este género. Se revisa una especie, Nototylus fryi (Schaum), y una segunda, Nototylus balli sp. nov., se describe como nueva. Ambas especies se conocen de un solo espécimen, ninguno de los cuales está en buenas condiciones. Se discute la posible función de lo que aparece ser una estructura para acicalamiento antenal el fémur anterior.


RésuméUne révision taxonomique de la tribu énigmatique de coléoptères Nototylini (Carabidae) est présentée et une clé pour l'identification d'espèces est fournie. Deux espèces d'Amérique du Sud sont incluses dans le genre. Une espèce est examinée (Nototylus fryi (Schaum)) et, une deuxième est décrite comme nouvelle espèce (Nototylus balli sp. nov.). Chaque espèce est connue à partir d'un seul spécimen dont aucun est en bon état. La possible fonction de ce qui semble être une structure de toilette antennaire sur le pro-fémur est discutée.


ResumoUma enigmática tribo de besouros, Nototylini (Carabidae), é revisada, e uma chave para as espécies de Nototylus é fornecida. O gênero agora inclui duas espécies: Nototylus fryi (Schaum), aqui redescrita, e Nototylus balli sp. nov., descrita como nova. Ambas são conhecidas por somente um espécimen em mal estado de conservação. Discute-se a função de uma estrutura singular do femur anterior, possivelmente usada na escovagem da antena.

10.
Zookeys ; 1007: 85-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505182

RESUMO

Two new species of Bembidion are described from river shores in North America. One, Bembidion mimbres sp. nov., from the Gila River watershed in the lands of the Mimbres culture in New Mexico and Arizona, is closely related to the widespread Bembidion levigatum. DNA sequences from several linkage groups and morphology provide evidence of the distinctiveness of B. mimbres. The second, Bembidion corgenoma sp. nov., has been the subject of recent genomic and transcriptomic studies. It belongs in the Bembidion transversale subgroup, and occurs from California north to British Columbia, east to Montana and Nevada. The B. transversale subgroup as a whole is reviewed, and morphological characters that distinguish B. corgenoma from the similar and sympatric B. transversale and B. erosum are described and illustrated. DNA sequences of these three species show no consistent differences in 28S, COI, CAD, and Topoisomerase, and a coalescent species delimitation analysis reveals no notable structure within the complex. This is the first known trio of species within Bembidion for which those genes provide no clear signal of species boundaries. A neotype is designated for the one name in the group that lacks a primary type, Bembidium haplogonum Chaudoir. Chromosomes of the new species and their relatives are as is typical for Bembidion, with eleven pairs of autosomes and an XY/XX sex chromosome system.

11.
Proc Natl Acad Sci U S A ; 116(49): 24729-24737, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740605

RESUMO

The order Coleoptera (beetles) is arguably the most speciose group of animals, but the evolutionary history of beetles, including the impacts of plant feeding (herbivory) on beetle diversification, remain poorly understood. We inferred the phylogeny of beetles using 4,818 genes for 146 species, estimated timing and rates of beetle diversification using 89 genes for 521 species representing all major lineages and traced the evolution of beetle genes enabling symbiont-independent digestion of lignocellulose using 154 genomes or transcriptomes. Phylogenomic analyses of these uniquely comprehensive datasets resolved previously controversial beetle relationships, dated the origin of Coleoptera to the Carboniferous, and supported the codiversification of beetles and angiosperms. Moreover, plant cell wall-degrading enzymes (PCWDEs) obtained from bacteria and fungi via horizontal gene transfers may have been key to the Mesozoic diversification of herbivorous beetles-remarkably, both major independent origins of specialized herbivory in beetles coincide with the first appearances of an arsenal of PCWDEs encoded in their genomes. Furthermore, corresponding (Jurassic) diversification rate increases suggest that these novel genes triggered adaptive radiations that resulted in nearly half of all living beetle species. We propose that PCWDEs enabled efficient digestion of plant tissues, including lignocellulose in cell walls, facilitating the evolution of uniquely specialized plant-feeding habits, such as leaf mining and stem and wood boring. Beetle diversity thus appears to have resulted from multiple factors, including low extinction rates over a long evolutionary history, codiversification with angiosperms, and adaptive radiations of specialized herbivorous beetles following convergent horizontal transfers of microbial genes encoding PCWDEs.


Assuntos
Biodiversidade , Evolução Biológica , Besouros/genética , Transferência Genética Horizontal , Genoma de Inseto , Animais , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Celulases/genética , Celulases/metabolismo , Besouros/enzimologia , Besouros/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/enzimologia , Fungos/genética , Herbivoria/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Lignina/química , Lignina/metabolismo , Filogenia , Plantas/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
12.
Ecol Evol ; 9(12): 6933-6948, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31312430

RESUMO

Targeted capture and enrichment approaches have proven effective for phylogenetic study. Ultraconserved elements (UCEs) in particular have exhibited great utility for phylogenomic analyses, with the software package phyluce being among the most utilized pipelines for UCE phylogenomics, including probe design. Despite the success of UCEs, it is becoming increasing apparent that diverse lineages require probe sets tailored to focal taxa in order to improve locus recovery. However, factors affecting probe design and methods for optimizing probe sets to focal taxa remain underexplored. Here, we use newly available beetle (Coleoptera) genomic resources to investigate factors affecting UCE probe set design using phyluce. In particular, we explore the effects of stringency during initial design steps, as well as base genome choice on resulting probe sets and locus recovery. We found that both base genome choice and initial bait design stringency parameters greatly alter the number of resultant probes included in final probe sets and strongly affect the number of loci detected and recovered during in silico testing of these probe sets. In addition, we identify attributes of base genomes that correlated with high performance in probe design. Ultimately, we provide a recommended workflow for using phyluce to design an optimized UCE probe set that will work across a targeted lineage, and use our findings to develop a new, open-source UCE probe set for beetles of the suborder Adephaga.

13.
Mol Phylogenet Evol ; 135: 270-285, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30822528

RESUMO

The beetle superfamily Dytiscoidea, placed within the suborder Adephaga, comprises six families. The phylogenetic relationships of these families, whose species are aquatic, remain highly contentious. In particular the monophyly of the geographically disjunct Aspidytidae (China and South Africa) remains unclear. Here we use a phylogenomic approach to demonstrate that Aspidytidae are indeed monophyletic, as we inferred this phylogenetic relationship from analyzing nucleotide sequence data filtered for compositional heterogeneity and from analyzing amino-acid sequence data. Our analyses suggest that Aspidytidae are the sister group of Amphizoidae, although the support for this relationship is not unequivocal. A sister group relationship of Hygrobiidae to a clade comprising Amphizoidae, Aspidytidae, and Dytiscidae is supported by analyses in which model assumptions are violated the least. In general, we find that both concatenation and the applied coalescent method are sensitive to the effect of among-species compositional heterogeneity. Four-cluster likelihood-mapping suggests that despite the substantial size of the dataset and the use of advanced analytical methods, statistical support is weak for the inferred phylogenetic placement of Hygrobiidae. These results indicate that other kinds of data (e.g. genomic meta-characters) are possibly required to resolve the above-specified persisting phylogenetic uncertainties. Our study illustrates various data-driven confounding effects in phylogenetic reconstructions and highlights the need for careful monitoring of model violations prior to phylogenomic analysis.


Assuntos
Classificação , Besouros/classificação , Besouros/genética , Genômica , Filogenia , Aminoácidos/genética , Animais , Sequência de Bases , Códon/genética , Genoma , Funções Verossimilhança , Transcriptoma/genética
14.
Mol Phylogenet Evol ; 132: 151-176, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468941

RESUMO

Using data from two nuclear ribosomal genes and four nuclear protein-coding genes, we infer a well-resolved phylogeny of major lineages of the carabid beetle supertribe Trechitae, based upon a sampling of 259 species. Patrobini is the sister group of Trechitae, but the genus Lissopogonus appears to be outside of the Patrobini + Trechitae clade. We find that four enigmatic trechite genera from the Southern Hemisphere, Bembidarenas, Argentinatachoides, Andinodontis, and Tasmanitachoides, form a clade that is the sister group of Trechini; we describe this clade as a new tribe, Bembidarenini. Bembidarenini + Trechini form the sister group of remaining trechites. Within Trechini, subtribe Trechodina is not monophyletic, as three trechodine genera from Australia (Trechobembix, Paratrechodes, Cyphotrechodes) are the sister group of subtribe Trechina. Trechini appears to have originated in the continents of the Southern Hemisphere, with almost all Northern Hemisphere lineages representing a single radiation within the subtribe Trechina. We present moderate evidence that the geographically and phylogenetically isolated genera Sinozolus (six species in the mountains of China), Chaltenia (one species in Argentina and Chile), and Phrypeus (one species in western North America) also form a clade, the tribe Sinozolini. The traditionally recognized tribe Bembidiini sens. lat., diagnosed by the presence of a subulate terminal palpomere, is shown to be polyphyletic; subulate palpomeres have arisen five times within Trechitae. Anillini is monophyletic, and the sister group of Tachyini + Pogonini + Bembidiini + Zolini + Sinozolini; within anillines, we confirm earlier results indicating the eyed New Zealand genus Nesamblyops as the sister to the rest. Sampled New World Pogonini are monophyletic, rendering the genus Pogonus non-monophyletic. Tachyina and Xystosomina are sister groups. Within Xystosomina, the New World members are monophyletic, and are sister to an Australia-New Zealand clade. The latter consists of the genus Philipis as well as taxa not previously recognized as xystosomines: Kiwitachys, the "Tachys" ectromioides group, and "Tachys" mulwalensis. Within Tachyina, the subgenus Elaphropus is not closely related to other subgenera previously placed in the genus Elaphropus; we move the other subgenera into the genus Tachyura. Tachyina with a bifoveate mentum do not form a clade; in fact, a bifoveate mentum is found in Xystosomina, Sinozolini, Trechini, Trechitae and its sister group, Patrobini. Extensive homoplasy in the morphological characters previously used as key indicators of relationship is supported by our results: in addition to multiple origins of subulate palpomeres and bifoveate menta, a concave protibial notch has arisen independently in Anillina, Xystosomina, and Tachyina. Phylogenetically and geographically isolated, species-poor lineages in Trechini, Bembidarenini, and Sinozolini may be relicts of more widespread faunas; many of these are found today on gravel or sand shores of creeks and rivers, which may be an ancestral habitat for portions of Trechitae. In addition to the description of Bembidarenini, we present a diagnosis of the newly delimited Sinozolini, and keys to the tribes of Trechitae.


Assuntos
Besouros/classificação , Oxirredutases do Álcool/classificação , Oxirredutases do Álcool/genética , Animais , Arginina Quinase/classificação , Arginina Quinase/genética , Besouros/anatomia & histologia , Besouros/crescimento & desenvolvimento , Ecossistema , Larva/anatomia & histologia , Filogenia , RNA Ribossômico 18S/classificação , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genética
15.
Biodivers Data J ; (6): e30763, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568533

RESUMO

BACKGROUND: The ground beetle Bembidion (Neja) ambiguum Dejean is native to Europe and north Africa, in the Mediterranean region. NEW INFORMATION: We report it from North America for the first time, from five localities around San Francisco Bay, California. The earliest record is from 2012.

16.
Risk Anal ; 38(11): 2340-2367, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30080941

RESUMO

In this article we identify the impact of the construction of flood defenses on property prices using a difference-in-differences repeat-sales methodology. Our data set contains information on over 12 million individual property transactions, which is merged with GIS data identifying the spatial location and main characteristics of 1,666 flood defenses built in England between 1995 and 2014. Results suggest that at the finer 6-digit postcode level the construction of flood defenses raises urban house prices by 12.6% to 16.7%. However, for rural properties at the slightly coarser 5-digit postcode level the construction of defenses reduces house prices by 0.8% to 5.0%. This suggests that in certain locations the disamenity impact of flood defenses and the perceived threat of redirected flooding outweigh the benefits of reduced flood risk.

17.
Zookeys ; (733): 119-129, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434486

RESUMO

We describe a new genus and species of Histeridae from Upper Cretaceous Burmese amber, Amplectister tenax Caterino & Maddison, gen. & sp. n. This species represents the third known Cretaceous histerid, which, like the others, is highly distinct and cannot easily be placed to subfamily. It exhibits prosternal characters in common with Saprininae, but other characters appear inconsistent with this possibility. The abdominal venter is strongly concave, and the hind legs are enlarged and modified for grasping. We hypothesize that this represents the earliest example in Histeridae of modifications for phoresy on social insects.

18.
Mol Ecol Resour ; 17(6): 1183-1201, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28199781

RESUMO

Despite advances that allow DNA sequencing of old museum specimens, sequencing small-bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small-bodied (3-6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58-159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1-10 ng). We also explored low-cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low-input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens.


Assuntos
Besouros/genética , DNA/genética , DNA/isolamento & purificação , Entomologia/métodos , Fósseis , Análise de Sequência de DNA/métodos , Manejo de Espécimes/métodos , Animais , Besouros/classificação , DNA/química , Entomologia/economia , Biblioteca Gênica , Guias como Assunto , Museus , Análise de Sequência de DNA/economia , Manejo de Espécimes/economia
19.
Curr Opin Insect Sci ; 18: 77-82, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27939714

RESUMO

Insect phylogenetics is being profoundly changed by many innovations. Although rapid developments in genomics have center stage, key progress has been made in phenomics, field and museum science, digital databases and pipelines, analytical tools, and the culture of science. The importance of these methodological and cultural changes to the pace of inference of the hexapod Tree of Life is discussed. The innovations have the potential, when synthesized and mobilized in ways as yet unforeseen, to shine light on the million or more clades in insects, and infer their composition with confidence. There are many challenges to overcome before insects can enter the 'phylocognisant age', but because of the promise of genomics, phenomics, and informatics, that is now an imaginable future.


Assuntos
Entomologia/tendências , Insetos/classificação , Filogenia , Animais , Bases de Dados Genéticas , Genômica , Projetos de Pesquisa/tendências
20.
Zookeys ; (632): 75-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27920606

RESUMO

Stygoporus oregonensis Larson & LaBonte is a little-known subterranean diving beetle, which, until recently, had not been collected since the type series was taken from a shallow well in western Oregon, USA, in 1984. Here we report the discovery of additional specimens collected from a nearby well in the Willamette Valley. Sequence data from four mitochondrial genes, wingless, and histone III place Stygoporus Larson & LaBonte in the predominantly Mediterranean subtribe Siettitiina of the Hydroporini. Morphological support for these results is discussed, and details of the collecting circumstances of the new specimens are presented. We argue that the biogeographic patterns of Nearctic Siettitiina highlight the likelihood of additional undiscovered subterranean dytiscids in North America.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA