Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 115(1): 14-22, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744723

RESUMO

Increased ß-adrenergic receptor activity has been hypothesized to cause bone loss in those with dementia. We investigated the effect of long-term ß-blocker use on rate of bone loss in older adults with dementia. We used a linear mixed-effects model to estimate the relationship between long-term ß-blocker use and rate of bone loss in participants from the Health Aging and Body Composition study. Records of 1198 participants were analyzed, 44.7% were men. Among the men, 25.2% had dementia and 20.2% were on ß-blockers, while in the women, 22.5% had dementia and 16.6% received ß-blockers. In the 135 men with dementia, 23 were taking ß-blockers, while 15 of 149 women with dementia were using ß-blockers. In men with dementia, ß-blocker users had 0.00491 g/cm2 less bone mineral density (BMD) loss per year at the femoral neck (i.e., 0.63% less loss per year) than non-users (p < 0.05). No differences were detected in women with or without dementia and men without dementia. ß-blockers may be protective by slowing down bone loss in older men with dementia.


Assuntos
Antagonistas Adrenérgicos beta , Densidade Óssea , Demência , Humanos , Masculino , Feminino , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Idoso , Densidade Óssea/efeitos dos fármacos , Demência/tratamento farmacológico , Idoso de 80 Anos ou mais , Osteoporose/tratamento farmacológico , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo
2.
Elife ; 122023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36848406

RESUMO

Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.


Assuntos
Osteoporose , Probióticos , Animais , Camundongos , Osteogênese , Osteoporose/terapia , Receptor 2 Toll-Like , Saccharomyces/genética , Saccharomyces/metabolismo
4.
J Bone Miner Res ; 36(9): 1661-1679, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278610

RESUMO

The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Integrases , Osteoclastos , Animais , Camundongos , Camundongos Transgênicos , Recombinação Genética
5.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207620

RESUMO

The skeleton is heavily innervated by sympathetic nerves and represents a common site for breast cancer metastases, the latter being the main cause of morbidity and mortality in breast cancer patients. Progression and recurrence of breast cancer, as well as decreased overall survival in breast cancer patients, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow. Preclinical studies have demonstrated that sympathetic stimulation of ß-adrenergic receptors in osteoblasts increases bone vascular density, adhesion of metastatic cancer cells to blood vessels, and their colonization of the bone microenvironment, whereas ß-blockade prevented these events in mice with high endogenous sympathetic activity. These findings in preclinical models, along with clinical data from breast cancer patients receiving ß-blockers, support the pathophysiological role of excess sympathetic nervous system activity in the formation of bone metastases, and the potential of commonly used, safe, and low-cost ß-blockers as adjuvant therapy to improve the prognosis of bone metastases.

6.
Methods Mol Biol ; 2308: 21-34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057711

RESUMO

Bone physiology is dictated by various players, including osteoclasts (OCLs) as bone resorbing cells, osteoblasts (capable of bone formation), osteocytes, or mesenchymal stem cells, to mention the most important players. All these cells are in tight communication with each other and influence the constantly occurring process of bone remodeling to meet changing requirements on the skeletal system. In order to understand these interplays, one must investigate isolated functions of the various cell types. However, OCL research displays a special drawback: due to their giant size, low abundance, and tight attachment on the bone surface, ex vivo isolation of sufficient amounts of mature OCLs is limited or not conceivable in most species including mice. Moreover, OCLs can be obtained from different progenitors in vivo as well as in vitro. Thus, in vitro differentiation of OCLs from various progenitor cells remains essential in the analysis of OCL biology, underlining the importance of reliable gold standard protocols to be applied throughout OCL research. This chapter will deal with in vitro differentiation of OCLs from murine bone marrow cells, as well as isolated monocytes and dendritic cells that have already been validated in numerous studies.


Assuntos
Diferenciação Celular , Células Dendríticas/fisiologia , Células-Tronco Mesenquimais/fisiologia , Monócitos/fisiologia , Osteoclastos/fisiologia , Osteogênese , Animais , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Separação Celular , Células Cultivadas , Células Dendríticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Monócitos/metabolismo , Osteoclastos/metabolismo , Fenótipo
7.
Front Cell Dev Biol ; 9: 627153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869176

RESUMO

Long bones from mammals host blood cell formation and contain multiple cell types, including adipocytes. Physiological functions of bone marrow adipocytes are poorly documented. Herein, we used adipocyte-deficient PPARγ-whole body null mice to investigate the consequence of total adipocyte deficiency on bone homeostasis in mice. We first highlighted the dual bone phenotype of PPARγ null mice: one the one hand, the increased bone formation and subsequent trabecularization extending in the long bone diaphysis, due to the well-known impact of PPARγ deficiency on osteoblasts formation and activity; on the other hand, an increased osteoclastogenesis in the cortical bone. We then further explored the cause of this unexpected increased osteoclastogenesis using two independent models of lipoatrophy, which recapitulated this phenotype. This demonstrates that hyperosteoclastogenesis is not intrinsically linked to PPARγ deficiency, but is a consequence of the total lipodystrophy. We further showed that adiponectin, a cytokine produced by adipocytes and mesenchymal stromal cells is a potent inhibitor of osteoclastogenesis in vitro and in vivo. Moreover, pharmacological activation of adiponectin receptors by the synthetic agonist AdipoRon inhibited mature osteoclast activity both in mouse and human cells by blocking podosome formation through AMPK activation. Finally, we demonstrated that AdipoRon treatment blocks bone erosion in vivo in a murine model of inflammatory bone loss, providing potential new approaches to treat osteoporosis.

8.
Elife ; 92020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32400390

RESUMO

Bone destruction relies on interactions between bone and immune cells. Bone-resorbing osteoclasts (OCLs) were recently identified as innate immune cells activating T cells toward tolerance or inflammation. Thus, pathological bone destruction not only relies on increased osteoclast differentiation, but also on the presence of inflammatory OCLs (i-OCLs), part of which express Cx3cr1. Here, we investigated the contribution of mouse Cx3cr1+ and Cx3cr1neg i-OCLs to bone loss. We showed that Cx3cr1+ and Cx3cr1neg i-OCLs differ considerably in transcriptional and functional aspects. Cx3cr1neg i-OCLs have a high ability to resorb bone and activate inflammatory CD4+ T cells. Although Cx3cr1+ i-OCLs are associated with inflammation, they resorb less and have in vitro an immune-suppressive effect on Cx3cr1neg i-OCLs, mediated by PD-L1. Our results provide new insights into i-OCL heterogeneity. They also reveal that different i-OCL subsets may interact to regulate inflammation. This contributes to a better understanding and prevention of inflammatory bone destruction.


Assuntos
Reabsorção Óssea/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Inflamação/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Animais , Reabsorção Óssea/imunologia , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Receptor 1 de Quimiocina CX3C/genética , Comunicação Celular , Células Cultivadas , Feminino , Inflamação/imunologia , Inflamação/patologia , Inflamação/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/imunologia , Osteoclastos/patologia , Osteoporose/imunologia , Osteoporose/patologia , Osteoporose/prevenção & controle , Ovariectomia , Fenótipo , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Front Immunol ; 10: 1408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275328

RESUMO

Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.


Assuntos
Suscetibilidade a Doenças , Imunomodulação , Osteoclastos/imunologia , Osteoclastos/metabolismo , Animais , Apresentação de Antígeno , Biomarcadores , Remodelação Óssea/imunologia , Reabsorção Óssea/imunologia , Reabsorção Óssea/metabolismo , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Osteoclastos/patologia , Fenótipo
10.
Front Immunol ; 9: 2567, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450105

RESUMO

Osteoclasts (OCLs) are multinucleated phagocytes of monocytic origin responsible for physiological and pathological bone resorption including aging processes, chronic inflammation and cancer. Besides bone resorption, they are also involved in the modulation of immune responses and the regulation of hematopoietic niches. Accordingly, OCLs are the subject of an increasing number of studies. Due to their rarity and the difficulty to isolate them directly ex vivo, analyses on OCLs are usually performed on in vitro differentiated cells. In this state, however, OCLs represent a minority of differentiated cells. Since up to date a reliable purification procedure is still lacking for mature OCLs, all cells present in the culture are analyzed collectively to answer OCL-specific questions. With the development of in-depth transcriptomic and proteomic analyses, such global analyses on unsorted cells can induce severe bias effects in further results. In addition, for instance, analysis on OCL immune function requires working on purified OCLs to avoid contamination effects of monocytic precursors that may persist during the culture. This clearly highlights the need for a reliable OCL purification procedure. Here, we describe a novel and reliable method to sort OCLs based on cell multinucleation while preserving cell viability. Using this method, we successfully purified multinucleated murine cells. We showed that they expressed high levels of OCL markers and retained a high capacity of bone resorption, demonstrating that these are mature OCLs. The same approach was equally applied for the purification of human mature OCLs. Comparison of purified OCLs with mononucleated cells or unsorted cells revealed significant differences in the expression of OCL-specific markers at RNA and/or protein level. This exemplifies that substantially better outcomes for OCLs are achieved after the exclusion of mononucleated cells. Our results clearly demonstrate that the in here presented procedure for the analysis and sorting of pure OCLs represents a novel, robust and reliable method for the detailed examination of bona fide mature OCLs in a range that was previously impossible. Noteworthy, this procedure will open new perspectives into the biology of osteoclasts and osteoclast-related diseases.


Assuntos
Envelhecimento/fisiologia , Células da Medula Óssea/fisiologia , Reabsorção Óssea/patologia , Separação Celular/métodos , Inflamação/patologia , Osteoclastos/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Hematopoese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes
11.
ChemMedChem ; 12(20): 1697-1702, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28885764

RESUMO

Receptor activator of NF-κB (RANK), a member of the TNF-receptor superfamily, plays an important role in bone resorption and stimulates immune and epithelial cell activation. Denosumab, a human monoclonal antibody that blocks the RANK ligand (RANKL), is approved for the treatment of osteoporosis and bone metastasis. However, a small molecule that inhibits the RANK-RANKL interaction would be beneficial to decrease cost and to facilitate treatments with orally available therapeutic agents. Herein we report the discovery of the first nonpeptidic inhibitors of RANK-RANKL interactions. In screening a chemical library by competitive ELISA, the porphyrin verteporfin was identified as a hit. Derivatives were screened, and the chlorin-macrocycle-containing pheophorbide A and purpurin 18 were found to bind recombinant RANKL, to inhibit RANK-RANKL interactions in the ELISA, and to suppress the RANKL-dependent activation of model cells and the differentiation of RANK-expressing precursors into osteoclasts. This discovery of a family of small molecules that inhibit RANK activation presents an initial basis for further development of nonpeptidic therapeutic agents targeting the interaction between RANK and RANKL.


Assuntos
Porfirinas/farmacologia , Ligante RANK/antagonistas & inibidores , Receptor Ativador de Fator Nuclear kappa-B/antagonistas & inibidores , Animais , Sobrevivência Celular , Humanos , Células Jurkat , Camundongos , Estrutura Molecular , Osteogênese/efeitos dos fármacos , Porfirinas/química , Ligação Proteica , Ligante RANK/química , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/química , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Relação Estrutura-Atividade
12.
Forensic Sci Int Genet ; 25: 166-174, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613970

RESUMO

Sexing of biological evidence is an important aspect in forensic investigations. A routinely used molecular-genetic approach to this endeavour is the amelogenin sex test, which is integrated in most commercially available polymerase chain reaction (PCR) kits for human identification. However, this assay is not entirely effective in respect to highly degraded DNA samples. This study presents a homogeneous PCR assay for robust sex diagnosis, especially for the analysis of severely fragmented DNA. The introduced triplex for the X and Y chromosome (TriXY) is based on real-time PCR amplification of short intergenic sequences (<50bp) on both gonosomes. Subsequent PCR product examination and molecular-genetic sex-assignment rely on high-resolution melting (HRM) curve analysis. TriXY was optimized using commercially available multi-donor human DNA preparations of either male or female origin and successfully evaluated on challenging samples, including 46 ancient DNA specimens from archaeological excavations and a total of 16 DNA samples extracted from different segments of eight hair shafts of male and female donors. Additionally, sensitivity and cross-species amplification were examined to further test the assay's utility in forensic investigations. TriXY's closed-tube format avoids post-PCR sample manipulations and, therefore, distinctly reduces the risk of PCR product carry-over contamination and sample mix-up, while reducing labour and financial expenses at the same time. The method is sensitive down to the DNA content of approximately two diploid cells and has proven highly useful on severely fragmented and low quantity ancient DNA samples. Furthermore, it even allowed for sexing of proximal hair shafts with very good results. In summary, TriXY facilitates highly sensitive, rapid, and costeffective genetic sex-determination. It outperforms existing sexing methods both in terms of sensitivity and minimum required template molecule lengths. Therefore, we feel confident that TriXY will prove to be a reliable addition to the toolbox currently used for sex-typing in forensic genetics and other fields of research.


Assuntos
Cromossomos Humanos X , Cromossomos Humanos Y , DNA Intergênico , DNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise para Determinação do Sexo/métodos , Animais , Degradação Necrótica do DNA , Feminino , Cabelo/química , Humanos , Masculino , Especificidade da Espécie
13.
Forensic Sci Int Genet ; 15: 8-15, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25438934

RESUMO

Though shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, DNA testing has historically focused on the recovery of just about 600 base pairs of the mitochondrial DNA control region. Here, we describe our success in recovering complete mitochondrial genome (mtGenome) data (∼16,569bp) from single shed hairs. By employing massively parallel sequencing (MPS), we demonstrate that particular hair samples yield DNA sufficient in quantity and quality to produce 2-3kb mtGenome amplicons and that entire mtGenome data can be recovered from hair extracts even without PCR enrichment. Most importantly, we describe a small amplicon multiplex assay comprised of sixty-two primer sets that can be routinely applied to the compromised hair samples typically encountered in forensic casework. In all samples tested here, the MPS data recovered using any one of the three methods were consistent with the control Sanger sequence data developed from high quality known specimens. Given the recently demonstrated value of complete mtGenome data in terms of discrimination power among randomly sampled individuals, the possibility of recovering mtGenome data from the most compromised and limited evidentiary material is likely to vastly increase the utility of mtDNA testing for hair evidence.


Assuntos
DNA Mitocondrial/genética , Genética Forense , Genoma Mitocondrial , Cabelo/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...