Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-515993

RESUMO

While mRNA vaccines have been highly effective over the past 2 years in combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), waning of vaccine-induced antibody responses and lack of induction of respiratory tract immunity contribute to ongoing infection and transmission. However, intranasally (i.n.) administered vaccines may induce mucosal immunity at the site of respiratory virus infection and may thus boost protection. In this work, we present an i.n. administered SARS-CoV-2 self-amplifying RNA (saRNA) vaccine, delivered by a nanostructured lipid carrier (NLC), which induces both potent respiratory mucosal and systemic immune responses. Following prime-boost immunization in C57BL/6 mice, i.n. vaccination induces serum neutralizing antibody titers, bone marrow resident IgG-secreting cells, and robust systemic polyfunctional T cells, similar to intramuscular (i.m.) vaccination. The intranasal vaccine additionally induces key SARS-CoV-2-reactive lung-resident polyfunctional memory and lung-homing T cell populations. As a booster following i.m. administration, the i.n. vaccine also elicits robust mucosal and systemic immunity, exceeding an i.m. booster, durable for at least 4 months. This i.n. saRNA vaccines potent mucosal and systemic immunogenicity may be key for combating SARS-CoV-2 and other respiratory pathogens.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-485230

RESUMO

mRNA vaccines were the first to be authorized for use against SARS-CoV-2 and have since demonstrated high efficacy against serious illness and death. However, limitations in these vaccines have been recognized due to their requirement for cold storage, short durability of protection, and lack of access in low-resource regions. We have developed an easily-manufactured, potent self-amplifying RNA (saRNA) vaccine against SARS-CoV-2 that is stable at room temperature. This saRNA vaccine is formulated with a nanostructured lipid carrier (NLC), providing enhanced stability, improved manufacturability, and protection against degradation. In preclinical studies, this saRNA/NLC vaccine induced strong humoral immunity, as demonstrated by high pseudovirus neutralization titers to the Alpha, Beta, and Delta variants of concern and induction of long-lived bone marrow-resident antibody secreting cells. Robust Th1-biased T-cell responses were also observed after prime or homologous prime-boost in mice. Notably, the saRNA/NLC platform demonstrated thermostability at room temperature for at least 6 months when lyophilized. Taken together, this saRNA delivered by NLC represents a potential improvement in RNA technology that could allow wider access to RNA vaccines for the current COVID-19 and future pandemics.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251182

RESUMO

Emerging SARS-CoV-2 variants have raised concerns about resistance to neutralizing antibodies elicited by previous infection or vaccination. We examined whether sera from recovered and naive donors collected prior to, and following immunizations with existing mRNA vaccines, could neutralize the Wuhan-Hu-1 and B.1.351 variants. Pre-vaccination sera from recovered donors neutralized Wuhan-Hu-1 and sporadically neutralized B.1.351, but a single immunization boosted neutralizing titers against all variants and SARS-CoV-1 by up to 1000-fold. Neutralization was due to antibodies targeting the receptor binding domain and was not boosted by a second immunization. Immunization of naive donors also elicited cross-neutralizing responses, but at lower titers. Our study highlights the importance of vaccinating both uninfected and previously infected persons to elicit cross-variant neutralizing antibodies.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-406611

RESUMO

Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by -SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-091298

RESUMO

B cells specific for the SARS-CoV-2 S envelope glycoprotein spike were isolated from a COVID-19-infected subject using a stabilized spike-derived ectodomain (S2P) twenty-one days post-infection. Forty-four S2P-specific monoclonal antibodies were generated, three of which bound to the receptor binding domain (RBD). The antibodies were minimally mutated from germline and were derived from different B cell lineages. Only two antibodies displayed neutralizing activity against SARS-CoV-2 pseudo-virus. The most potent antibody bound the RBD in a manner that prevented binding to the ACE2 receptor, while the other bound outside the RBD. Our study indicates that the majority of antibodies against the viral envelope spike that were generated during the first weeks of COVID-19 infection are non-neutralizing and target epitopes outside the RBD. Antibodies that disrupt the SARS-CoV-2 spike-ACE2 interaction can potently neutralize the virus without undergoing extensive maturation. Such antibodies have potential preventive/therapeutic potential and can serve as templates for vaccine-design. IN BRIEFSARS-CoV-2 infection leads to expansion of diverse B cells clones against the viral spike glycoprotein (S). The antibodies bind S with high affinity despite being minimally mutated. Thus, the development of neutralizing antibody responses by vaccination will require the activation of certain naive B cells without requiring extensive somatic mutation. HighlightsO_LIAnalysis of early B cell response to SARS-CoV-2 spike protein C_LIO_LIMost antibodies target non-neutralizing epitopes C_LIO_LIPotent neutralizing mAb blocks the interaction of the S protein with ACE2 C_LIO_LINeutralizing antibodies are minimally mutated C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...