Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Miner Depos ; 58(1): 37-49, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644759

RESUMO

The abundance and types of reef-bearing carbonate platforms reflect the evolution of Devonian climate, with conspicuous microbial-algal reefs in the warm Early and Late Devonian and sponge-coral reefs in the cooler Middle Devonian. A dolomitized Wenlock-Lower Devonian microbial-algal reef-bearing carbonate platform hosts epigenetic copper-cobalt-germanium (Cu-Co-Ge) sulfide mineralization at Ruby Creek-Bornite in the Brooks Range, Alaska. Here, we present rhenium-osmium (Re-Os) radiometric ages and molybdenum and sulfur (δ98/95Mo = +2.04 to +5.48‰ and δ34S = -28.5 to -1.8‰) isotope variations for individual Cu-Co-Fe sulfide phases along the paragenetic sequence carrollite-bornite-pyrite. In the context of a hot, extensional passive margin, greenhouse conditions in the Early Devonian favored restriction of platform-top seawater circulation and episodic reflux of oxidized brines during growth of the carbonaceous carbonate platform. Molybdenum and sulfur isotope data signal the stepwise reduction of hot brines carrying Cu during latent reflux and geothermal circulation for at least ca. 15 million years from the Early Devonian until Cu-Co sulfide mineralization ca. 379-378 million years ago (Ma) in the Frasnian, Late Devonian (weighted mean of Re-Os model ages of carrollite at 379 ± 15 Ma [n = 4]; Re-Os isochron age of bornite at 378 ± 15 Ma [n = 6]). On the basis of petrographic relationships between sulfides and solid bitumen, and the Mo and S isotope data for sulfides, we imply that the endowment in critical metals (e.g., Co, Ge, Re) in the Ruby Creek-Bornite deposit is linked to the activity of primary producers that removed trace metals from the warm Early Devonian seawater and concentrated Co, Ge, and Re in algal-bacterial organic matter in carbonate sediments. Supplementary Information: The online version contains supplementary material available at 10.1007/s00126-022-01123-1.

2.
Science ; 379(6634): eabo0431, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36264828

RESUMO

The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.

3.
Sci Adv ; 8(46): eabo7239, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36264781

RESUMO

The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3He/4He and 20Ne/22Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth's atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.

4.
Sci Adv ; 8(32): eabl4920, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947666

RESUMO

The origin of volatiles in the Moon's interior is debated. Scenarios range from inheritance through a Moon-forming disk or "synestia" to late accretion by meteorites or comets. Noble gases are excellent tracers of volatile origins. We report analyses of all noble gases in paired, unbrecciated lunar mare basalts and show that magmatic glasses therein contain indigenous noble gases including solar-type He and Ne. Assimilation of solar wind (SW)-bearing regolith by the basaltic melt or SW implantation into the basalts is excluded on the basis of the petrological context of the samples, as well as the lack of SW and "excess 40Ar" in the magmatic minerals. The absence of chondritic primordial He and Ne signatures excludes exogenous contamination. We thus conclude that the Moon inherited indigenous noble gases from Earth's mantle by the Moon-forming impact and propose storage in the incompatible element-enriched ("KREEP") reservoir.

5.
Meteorit Planet Sci ; 56(3): 642-662, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34248346

RESUMO

We measured noble gases in "cluster chondrite clasts" from nine unequilibrated ordinary chondrites (UOCs). For five meteorites, we also present data for so-called "clastic matrix," the impact-brecciated material in which the angular to subrounded cluster chondrite clasts are often embedded. Cluster chondrite clasts are characterized by close-fit texture of deformed and indented chondrules with lower amounts of fine-grained interchondrule matrix than in other UOCs (Metzler 2012). They are ubiquitous in UOCs and may indicate accretion and compaction of hot and deformable chondrules within hours or days after formation. Clastic matrix of four of the five meteorites contains He and Ne implanted by the solar wind (SW), indicating that they are regolith breccias. In contrast, cluster chondrite clasts are essentially devoid of SW, confirming that they are fragments of "primary accretionary rocks" (Metzler 2012). Trapped Kr and Xe in all samples are essentially primordial (type "Q"). Trapped Xe concentrations in cluster chondrite clasts are similar to values in other UOCs of similar metamorphic grade despite their low fractions of primordial gas-bearing fine-grained materials. This possibly indicates that the interchondrule matrix in cluster chondrite clasts is more pristine than matrix of regular UOCs. Later loss of primordial gases during parent body metamorphism is mirrored in the decreasing concentrations of primordial noble gases with increasing petrologic type. Relative to cluster chondrite lithologies, clastic matrix often contains excesses of cosmogenic noble gases, most likely due to precompaction exposure in the parent body regolith.

6.
Nat Commun ; 12(1): 2546, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953195

RESUMO

Soil sustainability is reflected in a long-term balance between soil production and erosion for a given climate and geology. Here we evaluate soil sustainability in the Andean Altiplano where accelerated erosion has been linked to wetter climate from 4.5 ka and the rise of Neolithic agropastoralism in the millennium that followed. We measure in situ cosmogenic 14C directly on cultivated hilltops to quantify late Holocene soil loss, which we compare with background soil production rates determined from cosmogenic 26Al and 10Be. Our Monte Carlo-based inversion method identifies two scenarios to account for our data: an increase in erosion rate by 1-2 orders of magnitude between ~2.6 and 1.1 ka, or a discrete event stripping ~1-2 m of soil between ~1.9 and 1.1 ka. Coupled environmental and cultural factors in the Late Holocene signaled the onset of the pervasive human imprint in the Andean Altiplano seen today.

7.
Proc Natl Acad Sci U S A ; 117(4): 1884-1889, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932423

RESUMO

We determined interstellar cosmic ray exposure ages of 40 large presolar silicon carbide grains extracted from the Murchison CM2 meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga ago. A majority of the grains have interstellar lifetimes of <300 Ma, which is shorter than theoretical estimates for large grains. These grains condensed in outflows of asymptotic giant branch stars <4.9 Ga ago that possibly formed during an episode of enhanced star formation ∼7 Ga ago. A minority of the grains have ages >1 Ga. Longer lifetimes are expected for large grains. We determined that at least 12 of the analyzed grains were parts of aggregates in the interstellar medium: The large difference in nuclear recoil loss of cosmic ray spallation products 3He and 21Ne enabled us to estimate that the irradiated objects in the interstellar medium were up to 30 times larger than the analyzed grains. Furthermore, we estimate that the majority of the grains acquired the bulk of their cosmogenic nuclides in the interstellar medium and not by exposure to an enhanced particle flux of the early active sun.

8.
Anal Chem ; 91(9): 6190-6199, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30964998

RESUMO

Numerous applications require the precise analysis of U isotope relative enrichment in sample amounts in the subnanogram to picogram range; among those are nuclear forensics, nuclear safeguards, environmental survey, and geosciences. However, conventional thermal ionization mass spectrometry (TIMS) yields U combined ionization and transmission efficiencies (i.e., ratio of ions detected to sample atoms loaded) of less than 0.1% or 2% depending on the loading protocol, motivating the development of sources capable of enhancing ionization. The new prototype cavity source TIMS at ETH Zürich offers improvements from 4 to 15 times in combined ionization and transmission efficiency compared to conventional TIMS, yielding up to 5.6% combined efficiency. Uranium isotope ratios have been determined on reference standards in the 100 pg range bound to ion-exchange or extraction resin beads. For natural U standards, n(235U)/ n(238U) ratios are measured to relative external precisions of 0.5-1.0% (2RSD, 2 < n < 11, conventional source) or 2.0% (2RSD, n = 6, cavity source) and accuracies of 0.2-0.7% (conventional source) or 0.4-0.9% (cavity source). Meanwhile, n(234U)/ n(238U) ratios are determined to relative external precisions of 1.7-3.6% (2RSD, 2 < n < 11, conventional source) or 5.6% (2RSD, n = 6, cavity source) and accuracies of 0.1-2.5% (conventional source) or 0.5-8.3% (cavity source), which would benefit further from in-run organic interference and peak tailing corrections.

9.
Meteorit Planet Sci ; 53(11): 2327-2342, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30846899

RESUMO

We present He and Ne isotopes of individual presolar graphite grains from a low-density separate from Orgueil. Two grain mounts were analyzed with the same techniques but in a different sequence: The first one was measured with NanoSIMS followed by noble gas mass spectrometry, and the second one in reverse order. No grain contained 4He and only one grain on the second mount contained 3He. On the first mount, the grains had been extensively sputtered with NanoSIMS ion beams prior to noble gas analysis; we found only one grain out of 15 with presolar 22Ne above detection limit. In contrast, we found presolar 22Ne in six out of seven grains on the second mount that was not exposed to an ion beam prior to noble gas analysis. All 22 grains on the two mounts were imaged with scanning electron microscopy (SEM) and/or Auger microscopy. We present evidence that this contrasting observation is most likely due to e-beam-induced heating of the generally smaller grains on the first mount during SEM and Auger imaging, and not primarily due to the NanoSIMS analysis. If thermal contact of the grains to the substrate is absent, such that heat can only be dissipated via radiation, then the smaller, sputter-eroded grains are heated to higher temperatures such that noble gases can diffuse out. We discuss possible gas loss mechanisms and suggest solutions to reduce heating during e-beam analyses by minimizing voltages, beam currents, and dwell times. We also found small amounts of 21Ne in five grains. Using isotope data we determined that the dominant sources of most grains are core-collapse supernovae, congruent with earlier studies of low-density presolar graphite from Murchison. Only two of the grains are most likely from AGB stars, and two others have an ambiguous origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...