Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641465

RESUMO

The spliceosome catalyzes the splicing of pre-mRNAs. Although the spliceosome evolved from a prokaryotic self-splicing intron and an associated protein, it is a vastly more complex and dynamic ribonucleoprotein (RNP) whose function requires at least eight ATPases and multiple RNA rearrangements. These features afford stepwise opportunities for multiple inspections of the intron substrate, coupled with spliceosome disassembly for substrates that fail inspection. Early work using splicing-defective pre-mRNAs or small nuclear (sn)RNAs in Saccharomyces cerevisiae demonstrated that such checks could occur in catalytically active spliceosomes. We review recent results on pre-mRNA splicing in various systems, including humans, suggesting that earlier steps in spliceosome assembly are also subject to such quality control. The inspection-rejection framework helps explain the dynamic nature of the spliceosome.

2.
Trends Microbiol ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37985333

RESUMO

Invasive fungal infections pose a major threat to human health. Bacterial and protozoan pathogens secrete protein effectors that overcome innate immune barriers to promote microbial colonization, yet few such molecules have been identified in human fungal pathogens. Recent studies have begun to reveal these long-sought effectors and have illuminated how they subvert key cellular pathways, including apoptosis, myeloid cell polarization, Toll-like receptor signaling, and phagosome action. Thus, despite lacking the specialized secretion systems of bacteria and parasites, it is increasingly clear that fungi independently evolved effectors targeting pathways often subverted by other classes of pathogens. These findings demonstrate the remarkable power of convergent evolution to enable diverse microbes to infect humans while also setting the stage for detailed dissection of fungal disease mechanisms.

3.
Mol Cell ; 83(14): 2578-2594.e9, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402368

RESUMO

The spliceosome is a staggeringly complex machine, comprising, in humans, 5 snRNAs and >150 proteins. We scaled haploid CRISPR-Cas9 base editing to target the entire human spliceosome and investigated the mutants using the U2 snRNP/SF3b inhibitor, pladienolide B. Hypersensitive substitutions define functional sites in the U1/U2-containing A complex but also in components that act as late as the second chemical step after SF3b is dissociated. Viable resistance substitutions map not only to the pladienolide B-binding site but also to the G-patch domain of SUGP1, which lacks orthologs in yeast. We used these mutants and biochemical approaches to identify the spliceosomal disassemblase DHX15/hPrp43 as the ATPase ligand for SUGP1. These and other data support a model in which SUGP1 promotes splicing fidelity by triggering early spliceosome disassembly in response to kinetic blocks. Our approach provides a template for the analysis of essential cellular machines in humans.


Assuntos
Compostos de Epóxi , Spliceossomos , Humanos , Spliceossomos/metabolismo , Compostos de Epóxi/metabolismo , Macrolídeos/metabolismo , Splicing de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mutagênese
4.
Immunity ; 56(7): 1548-1560.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37279752

RESUMO

Cryptococcus neoformans is the leading cause of fungal meningitis and is characterized by pathogenic eosinophil accumulation in the context of type-2 inflammation. The chemoattractant receptor GPR35 is expressed by granulocytes and promotes their migration to the inflammatory mediator 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Given the inflammatory nature of cryptococcal infection, we examined the role of GPR35 in the circuitry underlying cell recruitment to the lung. GPR35 deficiency dampened eosinophil recruitment and fungal growth, whereas overexpression promoted eosinophil homing to airways and fungal replication. Activated platelets and mast cells were the sources of GPR35 ligand activity and pharmacological inhibition of serotonin conversion to 5-HIAA, or genetic deficiency in 5-HIAA production by platelets and mast cells resulted in more efficient clearance of Cryptococcus. Thus, the 5-HIAA-GPR35 axis is an eosinophil chemoattractant receptor system that modulates the clearance of a lethal fungal pathogen, with implications for the use of serotonin metabolism inhibitors in the treatment of fungal infections.


Assuntos
Criptococose , Infecções Fúngicas Invasivas , Humanos , Eosinófilos , Ácido Hidroxi-Indolacético , Mastócitos , Plaquetas , Ligantes , Receptores de Formil Peptídeo , Serotonina , Criptococose/microbiologia , Criptococose/patologia , Receptores Acoplados a Proteínas G/genética
5.
Nat Struct Mol Biol ; 30(7): 891-901, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217653

RESUMO

Little is understood about how the two major types of heterochromatin domains (HP1 and Polycomb) are kept separate. In the yeast Cryptococcus neoformans, the Polycomb-like protein Ccc1 prevents deposition of H3K27me3 at HP1 domains. Here we show that phase separation propensity underpins Ccc1 function. Mutations of the two basic clusters in the intrinsically disordered region or deletion of the coiled-coil dimerization domain alter phase separation behavior of Ccc1 in vitro and have commensurate effects on formation of Ccc1 condensates in vivo, which are enriched for PRC2. Notably, mutations that alter phase separation trigger ectopic H3K27me3 at HP1 domains. Supporting a direct condensate-driven mechanism for fidelity, Ccc1 droplets efficiently concentrate recombinant C. neoformans PRC2 in vitro whereas HP1 droplets do so only weakly. These studies establish a biochemical basis for chromatin regulation in which mesoscale biophysical properties play a key functional role.


Assuntos
Proteínas de Drosophila , Heterocromatina , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Proteínas do Grupo Polycomb/genética , Cromatina , Proteínas de Drosophila/genética
6.
Cell Host Microbe ; 30(11): 1589-1601.e5, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36323314

RESUMO

Candida albicans is the most common cause of fungal infection in humans. IL-17 is critical for defense against superficial fungal infections, but the role of this response in invasive disease is less understood. We show that C. albicans secretes a lipase, Lip2, that facilitates invasive disease via lipid-based suppression of the IL-17 response. Lip2 was identified as an essential virulence factor in a forward genetic screen in a mouse model of bloodstream infection. Murine infection with C. albicans strains lacking Lip2 display exaggerated IL-17 responses that lead to fungal clearance from solid organs and host survival. Both IL-17 signaling and lipase activity are required for Lip2-mediated suppression. Lip2 inhibits IL-17 production indirectly by suppressing IL-23 production by tissue-resident dendritic cells. The lipase hydrolysis product, palmitic acid, similarly suppresses dendritic cell activation in vitro. Thus, C. albicans suppresses antifungal IL-17 defense in solid organs by altering the tissue lipid milieu.


Assuntos
Candida albicans , Interleucina-17 , Humanos , Camundongos , Animais , Candida albicans/genética , Antifúngicos/uso terapêutico , Lipase/genética , Lipídeos , Proteínas Fúngicas
8.
9.
Nature ; 608(7921): 161-167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896747

RESUMO

Invasive fungal pathogens are major causes of human mortality and morbidity1,2. Although numerous secreted effector proteins that reprogram innate immunity to promote virulence have been identified in pathogenic bacteria, so far, there are no examples of analogous secreted effector proteins produced by human fungal pathogens. Cryptococcus neoformans, the most common cause of fungal meningitis and a major pathogen in AIDS, induces a pathogenic type 2 response characterized by pulmonary eosinophilia and alternatively activated macrophages3-8. Here, we identify CPL1 as an effector protein secreted by C. neoformans that drives alternative activation (also known as M2 polarization) of macrophages to enable pulmonary infection in mice. We observed that CPL1-enhanced macrophage polarization requires Toll-like receptor 4, which is best known as a receptor for bacterial endotoxin but is also a poorly understood mediator of allergen-induced type 2 responses9-12. We show that this effect is caused by CPL1 itself and not by contaminating lipopolysaccharide. CPL1 is essential for virulence, drives polarization of interstitial macrophages in vivo, and requires type 2 cytokine signalling for its effect on infectivity. Notably, C. neoformans associates selectively with polarized interstitial macrophages during infection, suggesting a mechanism by which C. neoformans generates its own intracellular replication niche within the host. This work identifies a circuit whereby a secreted effector protein produced by a human fungal pathogen reprograms innate immunity, revealing an unexpected role for Toll-like receptor 4 in promoting the pathogenesis of infectious disease.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas Fúngicas , Hipersensibilidade , Inflamação , Receptor 4 Toll-Like , Fatores de Virulência , Animais , Criptococose/imunologia , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/patogenicidade , Citocinas/imunologia , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Imunidade Inata , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Virulência , Fatores de Virulência/imunologia
10.
Mol Cell ; 82(6): 1186-1198.e6, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202575

RESUMO

Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.


Assuntos
Trifosfato de Adenosina , Epigenoma , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Citosina/química , DNA/genética , Metilação de DNA , Metiltransferases/genética
11.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791226

RESUMO

Cryptococcus neoformans, the most common cause of fungal meningitis, is a basidiomycete haploid budding yeast with a complete sexual cycle. Genome modification by homologous recombination is feasible using biolistic transformation and long homology arms, but the method is arduous and unreliable. Recently, multiple groups have reported the use of CRISPR-Cas9 as an alternative to biolistics, but long homology arms are still necessary, limiting the utility of this method. Since the S. pyogenes Cas9 derivatives used in prior studies were not optimized for expression in C. neoformans, we designed, synthesized, and tested a fully C. neoformans-optimized (Cno) Cas9. We found that a Cas9 harboring only common C. neoformans codons and a consensus C. neoformans intron together with a TEF1 promoter and terminator and a nuclear localization signal (Cno CAS9 or "CnoCAS9") reliably enabled genome editing in the widely used KN99α C. neoformans strain. Furthermore, editing was accomplished using donors harboring short (50 bp) homology arms attached to marker DNAs produced with synthetic oligonucleotides and PCR amplification. We also demonstrated that prior stable integration of CnoCAS9 further enhances both transformation and homologous recombination efficiency; importantly, this manipulation does not impact virulence in animals. We also implemented a universal tagging module harboring a codon-optimized fluorescent protein (mNeonGreen) and a tandem Calmodulin Binding Peptide-2X FLAG Tag that allows for both localization and purification studies of proteins for which the corresponding genes are modified by short homology-directed recombination. These tools enable short-homology genome engineering in C. neoformans.


Assuntos
Cryptococcus neoformans
12.
Curr Biol ; 31(22): 4898-4910.e4, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34555349

RESUMO

We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans. We found they govern splicing efficiency of introns with divergent spacing between intron elements. Importantly, most of these factors also suppress usage of weak nearby cryptic/alternative splice sites. Among these, orthologs of GPATCH1 and the helicase DHX35 display correlated functional signatures and copurify with each other as well as components of catalytically active spliceosomes, identifying a conserved G patch/helicase pair that promotes splicing fidelity. We propose that a significant fraction of spliceosomal proteins in humans and most eukaryotes are involved in limiting splicing errors, potentially through kinetic proofreading mechanisms, thereby enabling greater intron diversity.


Assuntos
Saccharomyces cerevisiae , Spliceossomos , Humanos , Íntrons/genética , Splicing de RNA , Saccharomyces cerevisiae/genética , Spliceossomos/genética , Spliceossomos/metabolismo
13.
J Med Chem ; 64(10): 6706-6719, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34006103

RESUMO

Cryptococcosis is an invasive infection that accounts for 15% of AIDS-related fatalities. Still, treating cryptococcosis remains a significant challenge due to the poor availability of effective antifungal therapies and emergence of drug resistance. Interestingly, protease inhibitor components of antiretroviral therapy regimens have shown some clinical benefits in these opportunistic infections. We investigated Major aspartyl peptidase 1 (May1), a secreted Cryptococcus neoformans protease, as a possible target for the development of drugs that act against both fungal and retroviral aspartyl proteases. Here, we describe the biochemical characterization of May1, present its high-resolution X-ray structure, and provide its substrate specificity analysis. Through combinatorial screening of 11,520 compounds, we identified a potent inhibitor of May1 and HIV protease. This dual-specificity inhibitor exhibits antifungal activity in yeast culture, low cytotoxicity, and low off-target activity against host proteases and could thus serve as a lead compound for further development of May1 and HIV protease inhibitors.


Assuntos
Antifúngicos/química , Ácido Aspártico Proteases/antagonistas & inibidores , Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/antagonistas & inibidores , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ácido Aspártico Proteases/genética , Ácido Aspártico Proteases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , HIV/enzimologia , Protease de HIV/química , Protease de HIV/metabolismo , Simulação de Dinâmica Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Trends Genet ; 37(1): 12-20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092902

RESUMO

Evolutionary innovations in chromatin biology have been recently discovered through the study of fungi. In Saccharomyces cerevisiae, a prion form of a deacetylase complex assembles over subtelomeric domains that produces a heritable gene expression state that enables resistance to stress. In Candida albicans, stress triggers adaptive chromosome destabilization via erasure a centromeric histone H3, CENP-A; a process that cooperates with a newly evolved H2A variant lacking a mitotic phosphorylation site. Finally, in Cryptococcus neoformans, the loss of a cytosine DNA methyltransferase at least 50 million years ago has enabled the Darwinian evolution of methylation patterns over geological timescales. These studies reveal a remarkable genetic and epigenetic evolutionary plasticity of the chromatin fiber, despite the highly conserved structure of the nucleosome.


Assuntos
Centrômero , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Epigênese Genética , Fungos/metabolismo , Histonas/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Evolução Molecular , Fungos/genética , Histonas/genética , Nucleossomos
16.
PLoS Genet ; 16(9): e1008744, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956370

RESUMO

Qsp1 is a secreted quorum sensing peptide required for virulence of the fungal meningitis pathogen Cryptococcus neoformans. Qsp1 functions to control cell wall integrity in vegetatively growing cells and also functions in mating. Rather than acting on a cell surface receptor, Qsp1 is imported to act intracellularly via the predicted oligopeptide transporter Opt1. Here, we identify a transcription factor network as a target of Qsp1. Using whole-genome chromatin immunoprecipitation, we find Qsp1 controls the genomic associations of three transcription factors to genes whose outputs are regulated by Qsp1. One of these transcription factors, Cqs2, is also required for the action of Qsp1 during mating, indicating that it might be a shared proximal target of Qsp1. Consistent with this hypothesis, deletion of CQS2 impacts the binding of other network transcription factors specifically to Qsp1-regulated genes. These genetic and genomic studies illuminate mechanisms by which an imported peptide acts to modulate eukaryotic gene expression.


Assuntos
Cryptococcus neoformans/genética , Percepção de Quorum/genética , Fatores de Transcrição/genética , Ciclo Celular/genética , Parede Celular/metabolismo , Criptococose/microbiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Genômica , Meningite Fúngica/genética , Peptídeos/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Fatores de Virulência/genética
17.
18.
Mol Cell ; 79(1): 127-139.e4, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32437639

RESUMO

C.neoformans Dnmt5 is an unusually specific maintenance-type CpG methyltransferase (DNMT) that mediates long-term epigenome evolution. It harbors a DNMT domain and SNF2 ATPase domain. We find that the SNF2 domain couples substrate specificity to an ATPase step essential for DNA methylation. Coupling occurs independent of nucleosomes. Hemimethylated DNA preferentially stimulates ATPase activity, and mutating Dnmt5's ATP-binding pocket disproportionately reduces ATPase stimulation by hemimethylated versus unmethylated substrates. Engineered DNA substrates that stabilize a reaction intermediate by mimicking a "flipped-out" conformation of the target cytosine bypass the SNF2 domain's requirement for hemimethylation. This result implies that ATP hydrolysis by the SNF2 domain is coupled to the DNMT domain conformational changes induced by preferred substrates. These findings establish a new role for a SNF2 ATPase: controlling an adjoined enzymatic domain's substrate recognition and catalysis. We speculate that this coupling contributes to the exquisite specificity of Dnmt5 via mechanisms related to kinetic proofreading.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Fúngico/química , DNA Fúngico/genética , Proteínas Fúngicas/genética , Hidrólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Nucleic Acids Res ; 48(5): 2312-2331, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32020195

RESUMO

Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression. uORF use depends on the Kozak sequence context of its start codon, and uORFs with strong contexts promote nonsense-mediated mRNA decay. Transcript leaders in Cryptococcus and other fungi are substantially longer and more AUG-dense than in Saccharomyces. Numerous Cryptococcus mRNAs encode predicted dual-localized proteins, including many aminoacyl-tRNA synthetases, in which a leaky AUG start codon is followed by a strong Kozak context in-frame AUG, separated by mitochondrial-targeting sequence. Analysis of other fungal species shows that such dual-localization is also predicted to be common in the ascomycete mould, Neurospora crassa. Kozak-controlled regulation is correlated with insertions in translational initiation factors in fidelity-determining regions that contact the initiator tRNA. Thus, start codon context is a signal that quantitatively programs both the expression and the structures of proteins in diverse fungi.


Assuntos
Códon de Iniciação/química , Cryptococcus/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Iniciação Traducional da Cadeia Peptídica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Mapeamento Cromossômico , Códon de Iniciação/metabolismo , Cryptococcus/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fases de Leitura Aberta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...