Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(4): e14467, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38656876

RESUMO

Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.


Assuntos
Bactérias , Biotecnologia , Temperatura Baixa , Enzimas , Biotecnologia/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Enzimas/metabolismo , Estabilidade Enzimática
2.
J Food Sci Technol ; 61(3): 444-458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327864

RESUMO

The Citrus fruits belong to the category where the groups of fruits are recognized to be an admirable repository of bioactive elements and phytochemical constituents, with strong biological potentials. The prominent use of Citrus fruits for nutrition as well as food processing has led to the release of a large amount of waste into the environment and surrounding, and it simultaneously burdens the nature and existence of many organisms including the human population. In order to rectify such consequences, the reuse of food waste from citrus for various advantageous effects. In this regard, the first part of the article primarily focussed on the various strategies available for the extraction of chemical elements from citrus waste and the remaining strand of the article focussed on the various bioactive compounds with special reference to their pharmacological as well as the medicinal benefits and future prospects.

3.
J Food Sci Technol ; 60(8): 2092-2104, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37273565

RESUMO

Nutraceuticals have attained substantial attention due to their health-boosting or disease-prevention characteristics. Growing awareness about the potential of nutraceuticals for the prevention and management of diseases affecting human has led to an increase in the market value of nutraceuticals in several billion dollars. Nevertheless, limitations in supply and isolation complications from plants, animals or fungi, limit the large-scale production of nutraceuticals. Microbial engineering at metabolic level has been proved as an environment friendly substitute for the chemical synthesis of nutraceuticals. Extensively used microbial systems such as E. coli and S. cerevisiae have been modified as versatile cell factories for the synthesis of diverse nutraceuticals. This review describes current interventions in metabolic engineering for synthesising some of the therapeutically important nutraceuticals (phenolic compounds, polyunsaturated fatty acids and carotenoids). We focus on the interventions in enhancing product yield through engineering at gene level or pathway level.

4.
Environ Pollut ; 333: 122113, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379875

RESUMO

Microplastics (MPs) as a kind of emerging contaminants, widely exists in various kinds of medium, sewage sludge (SS) is no exception. In the sewage treatment process, a large number of microplastics will be deposited in SS. More seriously, microplastics in sewage sludge can migrate to other environmental media and threaten human health. Therefore, it is necessary to remove MPs from SS. Among the various restorations, aerobic composting is emerging as a green microplastic removal method. There are more and more reports of using aerobic compost to degrade microplastics. However, there are few reports on the degradation mechanism of MPs in aerobic composting, hindering the innovation of aerobic composting methods. Therefore, in this paper, the degradation mechanism of MPs in SS is discussed based on the environmental factors such as physical, chemical and biological factors in the composting process. In addition, this paper expounds the MPs in potential hazards, and combined with the problems in the present study were studied the outlook.


Assuntos
Compostagem , Esgotos , Humanos , Microplásticos , Plásticos , Solo
5.
Front Nutr ; 10: 1200926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342549

RESUMO

Introduction: Environmental enteropathy (EE), a chronic small intestine disease characterized by gut inflammation, is widely prevalent in low-income countries and is hypothesized to be caused by continuous exposure to fecal contamination. Targeted nutritional interventions using potential probiotic strains from fermented foods can be an effective strategy to inhibit enteric pathogens and prevent chronic gut inflammation. Methods: We isolated potential strains from fermented rice water and lemon pickle and investigated their cell surface properties, antagonistic properties, adhesion to HT-29 cells, and inhibition of pathogen adherence to HT-29 cells. Bacteriocin-like inhibitory substances (BLIS) were purified, and in vivo, survival studies in Caenorhabditis elegans infected with Salmonella enterica MW116733 were performed. We further checked the expression pattern of pro and anti-inflammatory cytokines (IL-6, IL8, and IL-10) in HT-29 cells supplemented with strains. Results: The strains isolated from rice water (RS) and lemon pickle (T1) were identified as Limosilactobacillus fermentum MN410703 and MN410702, respectively. Strains showed probiotic properties like tolerance to low pH (pH 3.0), bile salts up to 0.5%, simulated gastric juice at low pH, and binding to extracellular matrix molecules. Auto-aggregation of T1 was in the range of 85% and significantly co-aggregated with Klebsiella pneumoniae, S. enterica, and Escherichia coli at 48, 79, and 65%, respectively. Both strains had a higher binding affinity to gelatin and heparin compared to Bacillus clausii. Susceptibility to most aminoglycoside, cephalosporin, and macrolide classes of antibiotics was also observed. RS showed BLIS activity against K. pneumoniae, S. aureus, and S. enterica at 60, 48, and 30%, respectively, and the protective effects of BLIS from RS in the C. elegans infection model demonstrated a 70% survival rate of the worms infected with S. enterica. RS and T1 demonstrated binding efficiency to HT-29 cell lines in the 38-46% range, and both strains inhibited the adhesion of E. coli MDR and S. enterica. Upregulation of IL-6 and IL-10 and the downregulation of IL-8 were observed when HT-29 cells were treated with RS, indicating the immunomodulatory effects of the strain. Discussion: The potential strains identified could effectively inhibit enteric pathogens and prevent environmental enteropathy.

6.
Bioresour Technol ; 379: 128992, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37011847

RESUMO

Lignocellulosic (LC) biomass is the most abundant renewable resource for mankind gravitating society towards sustainable solution for energy that can reduce the carbon footprint. The economic feasibility of 'biomass biorefinery' depends upon the efficiency cellulolytic enzymes which is the main crux. Its high production cost and low efficiencies are the major limitations, that need to be resolved. As the complexity of the genome increases, so does the complexity of the proteome, further facilitated by protein post-translational modifications (PTMs). Glycosylation is regarded the major PTMs and hardly any recent work is focused on importance of glycosylation in cellulase. By modifying protein side chains and glycans, superior cellulases with improved stability and efficiency can be obtained. Functional proteomics relies heavily on PTMs because they regulate activity, localization, and interactions with protein, lipid, nucleic acid, and cofactor molecules. O- and N- glycosylation in cellulases influences its characteristics adding positive attributes to the enzymes.


Assuntos
Celulase , Celulases , Celulases/metabolismo , Lignina/metabolismo , Celulase/metabolismo , Polissacarídeos , Biomassa
7.
Int J Biol Macromol ; 239: 124467, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37068536

RESUMO

Nanocellulose, a subset of nanomaterials made from cellulose, one of the world's most plentiful natural resources, has the potential to offer environmentally friendly, renewable, and sustainable building blocks with enhanced properties for a variety of applications in the nanotechnology field. This article describes the impact of glutaraldehyde (GA) on glycerol plasticized nanocellulose derived from I. coccinea L. plant root. Using a variety of characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), AFM, tensile and Brunauer-Emmett-Teller (BET) analysis, the effect of GA on glycerol plasticized nano-cellulose was investigated. The tensile modulus of the GA-crosslinked, 2 % glycerol-plasticized nanocellulose scaffolds is higher (88.82 MPa) than that of the regular nanocellulose scaffolds (78.8 MPa). The scaffold Young's modulus has been increased to 86.3 MPa. The results of the BET study proved that the surface area of the GA crosslinked nano-cellulose scaffold improved to129.703 m2/g. The larger surface area in turn results in a greater number of contact sites between consecutive fibers. This enhances the utility of the scaffold as a bio-adsorbent for waste water treatment. The absorbance of textile black dye and methylene blue dye in sunlight using nanocellulose composites as photocatalyst revealed a significant decrease in dye concentration after each hour, demonstrating the composites' bio-adsorbent property. The non-toxic nature, inertness, increased crystallinity index values, and good mechanical qualities are other characteristics of the GA-treated nanocellulose encourages its uses as product packaging, bioengineering materials, tissue engineering, and insulation coatings.


Assuntos
Glicerol , Nanoestruturas , Nanoestruturas/química , Nanotecnologia , Engenharia Tecidual , Difração de Raios X , Celulose/química
8.
Environ Pollut ; 322: 121246, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764380

RESUMO

The adaptive responses to moderate environmental challenges by the biological systems have usually been credited to hormesis. Since the hormetic biphasic dose-response illustrates a prominent pattern towards biological responsiveness, the studies concerning such aspects will get much more significance in risk assessment practices and toxicological evaluation research. From this point of view, the past few epochs have witnessed the extending recognition of the notion concerning hormesis. The extraction of its basic foundations of evolutionary perspectives-along with the probable underlying molecular and cellular mechanisms followed by the practical implications to enhance the quality of life. To get better and more effective output in this regard, the present article has evaluated the various observations of previous investigations. The intent of integrating the novel inferences concerning the hormesis-tempting stressors driven by predominant evolutionary factors for mitigating the adverse impacts that were prompted over frequent and continuous exposure to the various chemical elements. Such inferences can offer extensive insight into the implications concerning the risk assessment of hormesis.


Assuntos
Evolução Biológica , Exposição Ambiental , Hormese , Hormese/fisiologia , Qualidade de Vida , Medição de Risco , Estresse Fisiológico , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos
9.
Environ Pollut ; 323: 121274, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804140

RESUMO

Wastewater management has emerged as an uprising concern that demands immediate attention from environmentalists worldwide. Indiscriminate and irrational release of industrial and poultry wastes, sewage, pharmaceuticals, mining, pesticides, fertilizers, dyes and radioactive wastes, contribute immensely to water pollution. This has led to the aggravation of critical health concerns as evident from the uprising trends of antimicrobial resistance, and the presence of xenobiotics and pollutant traces in humans and animals due to the process of biomagnification. Therefore, the development of reliable, affordable and sustainable technologies for the supply of fresh water is the need of the hour. Conventional wastewater treatment often involves physical, chemical, and biological processes to remove solids from the effluent, including colloids, organic matter, nutrients, and soluble pollutants (metals, organics). Synthetic biology has been explored in recent years, incorporating both biological and engineering concepts to refine existing wastewater treatment technologies. In addition to outlining the benefits and drawbacks of the current technologies, this review addresses novel wastewater treatment techniques, especially those using dedicated rational design and engineering of organisms and their constituent parts. Furthermore, the review hypothesizes designing a multi-bedded wastewater treatment plant that is highly cost-efficient, sustainable and requires easy installation and handling. The novel setup envisages removing all the major wastewater pollutants, providing water fit for household, irrigation and storage purposes.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Análise Custo-Benefício , Esgotos/química , Purificação da Água/métodos , Poluentes Químicos da Água/análise
10.
Bioresour Technol ; 369: 128459, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36503095

RESUMO

The recent scenario has witnessed the augmenting demand for energy precursors primarily from renewable ways in respect of the natural environment. The high energy along with the cost-intensive nature of the conventional approaches directed the researchers to find out an effective and promising method that principally uses the microwave for the pretreatment. The formation of heat energy from electromagnetic energy through polar particle rotation would be noted to be the core principle of the aforesaid effective approach. The microwave treatments speed up the destruction of complex structure of the biomass by applying a specific range of heat over the polar parts in a selective manner in the aqueous medium. In this review, the implementation of microwave-assisted green approaches for modeling an integrated circular bioeconomic strategy to potentially use lignocellulosic biomass for bioproducts is discussed.


Assuntos
Lignina , Micro-Ondas , Biomassa , Lignina/química , Temperatura Alta , Biocombustíveis
11.
Bioresour Technol ; 370: 128555, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586428

RESUMO

The gradually increasing need for fossil fuels demands renewable biofuel substitutes. This has fascinated an increasing investigation to design innovative energy fuels that have comparable Physico-chemical and combustion characteristics with fossil-derived fuels. The efficient microbes for bioenergy synthesis desire the proficiency to consume a large quantity of carbon substrate, transfer various carbohydrates through efficient metabolic pathways, capability to withstand inhibitory components and other degradation compounds, and improve metabolic fluxes to synthesize target compounds. Metabolically engineered microbes could be an efficient methodology for synthesizing biofuel from cellulosic biomass by cautiously manipulating enzymes and metabolic pathways. This review offers a comprehensive perspective on the trends and advances in metabolic and genetic engineering technologies for advanced biofuel synthesis by applying various heterologous hosts. Probable technologies include enzyme engineering, heterologous expression of multiple genes, CRISPR-Cas technologies for genome editing, and cell surface display.


Assuntos
Biocombustíveis , Engenharia Genética , Engenharia Genética/métodos , Lignina/química , Edição de Genes/métodos , Engenharia Metabólica/métodos
12.
Environ Sci Pollut Res Int ; 30(4): 8977-8986, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35507222

RESUMO

The use of jackfruit peel as a source for natural and fully biodegradable "nanocellulose" (NC) for the production of bioplastics with Azadirachta indica (A. indica) extracts and polyethylene glycol (PEG) for the antibacterial properties is investigated. The characterization of the biocomposite using FT-IR and WXRD was reported. The physicochemical properties including thickness, moisture content, water holding capacity, swelling, porosity, and biodegradability in soil were investigated. The incorporation of A. indica extract revealed an increased shelf life due to the strong antibacterial activity, and these biocomposites were degraded in soil within 60 days after the end use without any harm to the environment. Jackfruit-derived nanocellulose film blended with A. indica extract exhibited strong antibacterial activity against gram-positive and gram-negative food spoilage bacteria. Disc diffusion assay, live/dead assay, and CFU analysis confirmed the antibacterial property of the synthesized film. Moreover, the films clearly prevented the biofilm formation in bacteria. Thus, the developed bioplastics can be utilized as appropriate substitutes to food packaging materials and also for biomedical applications such as wound dressings.


Assuntos
Artocarpus , Azadirachta , Produtos Biológicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Bactérias Gram-Negativas , Azadirachta/química
13.
Bioenergy Res ; 16(1): 16-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35350609

RESUMO

Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.

14.
Bioresour Technol ; 362: 127833, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029981

RESUMO

Current experimental evidence has revealed that pomegranate peel is a significant source of essential bio compounds, and many of them can be transformed into valorized products. Pomegranate peel can also be used as feedstock to produce fuels and biochemicals. We herein review this pomegranate peel conversion technology and the prospective valorized product that can be synthesized from this frequently disposed fruit waste. The review also discusses its usage as a carbon substrate to synthesize bioactive compounds like phenolics, flavonoids and its use in enzyme biosynthesis. Based on reported experimental evidence, it is apparent that pomegranate peel has a large number of applications, and therefore, the development of an integrated biorefinery concept to use pomegranate peel will aid in effectively utilizing its significant advantages. The biorefinery method displays a promising approach for efficiently using pomegranate peel; nevertheless, further studies should be needed in this area.


Assuntos
Lythraceae , Punica granatum , Antioxidantes/análise , Frutas/química , Lythraceae/química , Extratos Vegetais/química , Estudos Prospectivos
15.
Bioresour Technol ; 361: 127759, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961508

RESUMO

The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.


Assuntos
Saccharum , Biocombustíveis , Biomassa , Celulose/química , Estudos Prospectivos , Saccharum/química
17.
Environ Pollut ; 308: 119703, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787420

RESUMO

Phytases are a group of digestive enzymes which are commonly used as feed enzymes. These enzymes are used exogenously in the feeds of monogastric animals thereby it improves the digestibility of phosphorous and thus reduces the negative impact of inorganic P excretion on the environment. Even though these enzymes are widely distributed in many life forms, microorganisms are the most preferred and potential source of phytase. Despite the extensive availability of the phytase-producing microbial consortia, only a few microorganisms have been known to be exploited at industrial level. The high costs of the enzyme along with the incapability to survive high temperatures followed by the poor storage stability are noted to be the bottleneck in the commercialization of enzymes. For this reason, besides the conventional fermentation approaches, the applicability of cloning, expression studies and genetic engineering has been implemented for the past few years to accomplish the abovesaid benefits. The site-directed mutagenesis as well as knocking out have also validated their prominent role in microbe-based phytase production with enhanced levels. The present review provides detailed information on recent insights on the modification of phytases through heterologous expression and protein engineering to make thermostable and protease-resistant phytases.


Assuntos
6-Fitase , Poluentes Ambientais , 6-Fitase/genética , 6-Fitase/metabolismo , Ração Animal , Animais , Estabilidade Enzimática , Engenharia de Proteínas
18.
Bioresour Technol ; 360: 127592, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809874

RESUMO

Increases in population and urbanization leads to generation of a large amount of food waste (FW) and its effective waste management is a major concern. But putrescible nature and high moisture content is a major limiting factor for cost effective FW valorization. Bioconversion of FW for the production of value added products is an eco-friendly and economically viable strategy for addressing these issues. Targeting on production of multiple products will solve these issues to greater extent. This article provides an overview of bioconversion of FW to different value added products.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Alimentos
19.
J Food Sci Technol ; : 1-10, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35789583

RESUMO

Live microorganisms in the fermented foods termed probiotics and their secondary metabolites with bioactive potential were considered as potential anti-viral capabilities through various mechanisms. Given the importance of functional and fermented foods in disease prevention, there is a need to discuss the contextualization and deep understanding of the mechanism of action of these foods, particularly considering the appearance of coronavirus (COVID-19) pandemic, which is causing health concerns and increased social services globally. The mechanism of probiotic strains or their bioactive metabolites is due to stimulation of immune response through boosting T-lymphocytes, cytokines, and cell toxicity of natural killer cells. Proper consumption of these functional and fermented foods may provide additional antiviral approaches for public benefit by modulating the immune functions in the hosts. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05528-8.

20.
Environ Res ; 213: 113509, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660566

RESUMO

Endocrine Disrupting Chemicals (EDCs), major group of recalcitrant compounds, poses a serious threat to the health and future of millions of human beings, and other flora and fauna for years to come. A close analysis of various xenobiotics undermines the fact that EDC is structurally diverse chemical compounds generated as a part of anthropogenic advancements as well as part of their degradation. Regardless of such structural diversity, EDC is common in their ultimate drastic effect of impeding the proper functioning of the endocrinal system, basic physiologic systems, resulting in deregulated growth, malformations, and cancerous outcomes in animals as well as humans. The current review outlines an overview of various EDCs, their toxic effects on the ecosystem and its inhabitants. Conventional remediation methods such as physico-chemical methods and enzymatic approaches have been put into action as some form of mitigation measures. However, the last decade has seen the hunt for newer technologies and methodologies at an accelerated pace. Genetically engineered microbial degradation, gene editing strategies, metabolic and protein engineering, and in-silico predictive approaches - modern day's additions to our armamentarium in combating the EDCs are addressed. These additions have greater acceptance socially with lesser dissonance owing to reduced toxic by-products, lower health trepidations, better degradation, and ultimately the prevention of bioaccumulation. The positive impact of such new approaches on controlling the menace of EDCs has been outlaid. This review will shed light on sources of EDCs, their impact, significance, and the different remediation and bioremediation approaches, with a special emphasis on the recent trends and perspectives in using sustainable approaches for bioremediation of EDCs. Strict regulations to prevent the release of estrogenic chemicals to the ecosystem, adoption of combinatorial methods to remove EDC and prevalent use of bioremediation techniques should be followed in all future endeavors to combat EDC pollution. Moreover, the proper development, growth and functioning of future living forms relies on their non-exposure to EDCs, thus remediation of such chemicals present even in nano-concentrations should be addressed gravely.


Assuntos
Disruptores Endócrinos , Animais , Biodegradação Ambiental , Ecossistema , Disruptores Endócrinos/toxicidade , Sistema Endócrino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...