Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1029056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438875

RESUMO

Hospital acquired infections caused due to ESKAPE pathogens pose a challenge for treatment due to their growing antimicrobial resistance. Curcuma aromatica (CA) is traditionally known for its antibacterial, wound healing and anti-inflammatory properties. The present study highlights the biogenic synthesis of silver nanoparticles (CAAgNPs) capped and stabilized by the compounds from CA rhizome extract, also further demonstrating their antibacterial, antibiofilm and synergistic effects against multidrug-resistant (MDR) pathogens. CAAgNPs were synthesized using aqueous rhizome extract of CA (5 mg/ml) and AgNO3 (0.8 mM) incubated at 60°C up to 144 h. UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) revealed CAAgNPs with characteristic peak at 430 nm, 13 ± 5 nm size of spherical shape, showing presence of silver and crystalline nature, respectively. Dynamic light scattering (DLS) and zeta potential confirmed their monodispersed nature with average diameter of 77.88 ± 48.60 nm and stability. Fourier transform infrared spectroscopic (FTIR) analysis demonstrated the presence of phenolic -OH and carbonyl groups possibly involved in the reduction and stabilization of CAAgNPs. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum biofilm inhibitory concentrations (MBICs) of CAAgNPs against Pseudomonas aeruginosa, NCIM 5029 and PAW1, and, Staphylococcus aureus, NCIM 5021 and S8 were in range from 8 to 128 µg/ml. Almost 50% disruption of pre-formed biofilms at concentrations 8-1,024 µg/ml was observed. Fluorescence microscopy and FESEM analysis confirmed cell death and disruption of pre-formed biofilms of P. aeruginosa PAW1 and S. aureus S8. Checkerboard assay demonstrated the synergistic effect of CAAgNPs (0.125-4 µg/ml) in combination with various antibiotics (0.063-1,024 µg/ml) against planktonic and biofilm forms of P. aeruginosa PAW1. The study confirms the antibacterial and antibiofilm activity of CAAgNPs alone and in combination with antibiotics against MDR pathogens, thus, reducing the dose as well as toxicity of both. CAAgNPs have the potential to be used in wound dressings and ointments, and to improve the performances of medical devices and surgical implants. In vivo toxicity of CAAgNPs however needs to be tested further using mice models.

2.
Indian J Dent Res ; 33(2): 203-208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254961

RESUMO

Background: Partial pulpotomy is a procedural intervention that can maintain the vitality of pulp during the management of traumatized permanent teeth with pulpal involvement. Aim: To evaluate whether partial pulpotomy can be considered a reliable conservative treatment option for treating traumatized permanent anterior teeth with pulpal involvement. Methodology: A computerized systematic search was performed in PubMed, Science Direct, Cochrane, and LILACS databases from 1980 to May 2021. Five studies were included in the final analysis. Quality assessment, Meta-analysis, and Publication bias of the studies were evaluated. This systematic review was registered in PROSPERO (ID - CRD42021262031). Result: The comprehensive Meta-Analysis Software was used. The test of the heterogeneity was analysed using Cochran's Q statistics. The Q value was 7.186 (df = 6) with a P value of 0.3 and I2 as 16.5%. The studies were considered homogenous, and the fixed-effect model showed an overall point estimate of 0.89 with a 95% confidence interval (0.86-0.91). The Begg and Egger funnel plot indicated that there was no publication bias in the included studies. Conclusion: Evidence indicates that partial pulpotomy may be considered a reliable definitive treatment option in asymptomatic traumatized permanent anterior teeth with exposed pulp rather than total pulpotomy.


Assuntos
Dentição Permanente , Pulpotomia , Polpa Dentária , Capeamento da Polpa Dentária , Exposição da Polpa Dentária/terapia , Humanos , Resultado do Tratamento
3.
PLoS One ; 16(2): e0246020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529248

RESUMO

Pseudomonas aeruginosa is an ESKAPE pathogen associated with difficult-to-treat burn wound and surgical-site infections. This study aimed to characterise an extensively drug resistant (XDR) P. aeruginosa isolate (designated PAW1) and to investigate the antibiofilm and antipersister effect of acetic acid on PAW1. PAW1 was identified using biotypic (VITEK) and genotypic (16S rDNA) analysis. Minimum inhibitory concentration (MIC) and disc susceptibility testing showed high level resistance against all antibiotics from classes including beta lactams, cephems, carbapenems and fluoroquinolones. It was therefore identified as extensively drug resistant (XDR), showing resistance to all antibiotics except for, aminoglycoside (gentamicin and netilmicin) and lipopeptides (polymyxin B). Time kill assays showed antibiotic tolerant, persister cell formation in presence of 100X MICs of gentamicin and polymyxin B. Other virulence traits such as ability to produce lipase, protease, haemolysin, and siderophores and to form biofilms were additional factors which may contribute to its pathogenicity. PAW1 showed promising susceptibility against acetic acid with MIC and minimum biofilm inhibitory concentration of 0.156% (v/v). Percent viability of PAW1 was dependent on dose and treatment time of acetic acid. 0.625% acetic acid treatment of 5 minutes was effective in killing >90% planktonic cells showing lesser toxicity to L929 cells (IC50 = 0.625%). Biofilm disruption caused due to acetic acid was also dose dependent, showing 40.57% disruption after treatment with 0.625% acetic acid for 5 minutes. FESEM imaging and live dead staining of planktonic and biofilm forms of PAW1 confirmed that acetic acid treatment caused 19.04% of cell shrinkage and disruption of extracellular matrix resulting in killing of cells. Antipersister activity of acetic acid was demonstrated by showing complete killing of PAW1 at 4X MIC. Overall, this study characterised an XDR isolate P. aeruginosa showing resistance and tolerance to various antibiotics. Antipersister and antibiofilm effect of acetic acid demonstrates the importance of forgotten topical agents as an effective strategy to treat XDR pathogens.


Assuntos
Ácido Acético/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Filogenia , Plâncton/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Fatores de Tempo
4.
J Trace Elem Med Biol ; 62: 126630, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32738757

RESUMO

BACKGROUND: Biogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa). METHODS: bAgNPs were synthesized using Acinetobacter sp. whereas pAgNPs were synthesized using aqueous root extract of Curcuma aromatica. Effect of these nanoparticles on HeLa cells viability was studied using MTT assay and colony formation assay. Anticancer potential was determined using fluorescence microscopy and flow cytometry studies. Bio-compatibility studies were performed against peripheral blood mononuclear cells (PBMCs). RESULTS: Both the nanoparticles showed 50 % viability of peripheral blood mononuclear cells (PBMCs) when used at high concentration (200 µg/mL). IC50 for bAgNPs and pAgNPs against HeLa cells were 17.4 and 14 µg/mL respectively. Colony formation ability of Hela cells was reduced on treatment with both nanoparticles. Acridine orange and ethidium bromide staining demonstrated that bAgNPs were cytostatic whereas pAgNPs were apoptotic. JC-1 dye staining revealed that the mitochondrial membrane potential was affected on treatment with pAgNPs while it remained unchanged on bAgNPs treatment. Flow cytometry confirmed cell cycle arrest in HeLa cells on treatment with nanoparticles further leading to apoptosis in case of pAgNPs. About 77 and 58 % HeLa cells were found in subG1 phase on treatment with bAgNPs and pAgNPs respectively. bAgNPs showed cytostatic effect on HeLa cells arresting the cell growth in subG1 phase, whereas, pAgNPs triggered death of HeLa cells through mitochondrial membrane potential impairment and apoptosis. CONCLUSION: Overall, bAgNPs and pAgNPs could be safe and showed potential to be used as anticancer nano-antibiotics against human cervical cancer cells.


Assuntos
Acinetobacter/química , Antineoplásicos/química , Curcuma/química , Nanopartículas Metálicas/química , Prata/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
5.
Front Microbiol ; 10: 539, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30988669

RESUMO

The acronym ESKAPE includes six nosocomial pathogens that exhibit multidrug resistance and virulence: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. Persistent use of antibiotics has provoked the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) bacteria, which render even the most effective drugs ineffective. Extended spectrum ß-lactamase (ESBL) and carbapenemase producing Gram negative bacteria have emerged as an important therapeutic challenge. Development of novel therapeutics to treat drug resistant infections, especially those caused by ESKAPE pathogens is the need of the hour. Alternative therapies such as use of antibiotics in combination or with adjuvants, bacteriophages, antimicrobial peptides, nanoparticles, and photodynamic light therapy are widely reported. Many reviews published till date describe these therapies with respect to the various agents used, their dosage details and mechanism of action against MDR pathogens but very few have focused specifically on ESKAPE. The objective of this review is to describe the alternative therapies reported to treat ESKAPE infections, their advantages and limitations, potential application in vivo, and status in clinical trials. The review further highlights the importance of a combinatorial approach, wherein two or more therapies are used in combination in order to overcome their individual limitations, additional studies on which are warranted, before translating them into clinical practice. These advances could possibly give an alternate solution or extend the lifetime of current antimicrobials.

6.
J Comp Physiol B ; 188(2): 325-331, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28755031

RESUMO

Vitamin D plays a central role in calcium homeostasis of most vertebrates, and is obtained in different species through diet, dermal synthesis, or a combination of both. The aim of this study was to determine the predominant routes of Vitamin D synthesis in three disparate species, brown kiwi (Apteryx mantelli), tuatara (Sphenodon punctatus), and New Zealand sea lions (Phocarctos hookeri). We surveyed plasma concentrations of 25-hydroxyvitamin D2 and D3, analysed environmental conditions and life history factors, and determined the ability of skin samples to synthesise Vitamin D3 on exposure to ultraviolet-B radiation. There was variation in the plasma/serum 25-hydroxyvitamin D3 concentrations between and within the species studied, with wild kiwi having the lowest concentrations and NZ sea lions the highest. Kiwi skin produced small but measurable amounts of Vitamin D3, while tuatara skin produced Vitamin D3 concentrations higher than that of kiwi. New Zealand sea lion skin produced the highest amount of Vitamin D3 and differed from the other two species in this study in that Vitamin D3 was present in skin before UV-B exposure. The results from this study show that all three species studied retained the ability to use both dietary and dermal sources of Vitamin D, although there was interspecies variation in the magnitude of dermal synthesis. Comparisons between these species show that there are differences in their Vitamin D pathways, but suggest that there are more factors contributing to these pathways than might be expected solely from life history characteristics.


Assuntos
Lagartos/metabolismo , Paleógnatas/metabolismo , Leões-Marinhos/metabolismo , Pele/metabolismo , Vitamina D/metabolismo , Animais , Feminino , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...