Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377486

RESUMO

AIMS: The lymphocyte adaptor protein (LNK) is a negative regulator of cytokine and growth factor signaling. The rs3184504 variant in SH2B3 reduces LNK function and is linked to cardiovascular, inflammatory, and hematologic disorders including stroke. In mice, deletion of Lnk causes inflammation and oxidative stress. We hypothesized that Lnk-/- mice are susceptible to atrial fibrillation (AF) and that rs3184504 is associated with AF and AF-related stroke in humans. During inflammation, reactive lipid dicarbonyls are a major component of oxidative injury, and we further hypothesized that these mediators are critical drivers of the AF substrate in Lnk-/- mice. METHODS AND RESULTS: Lnk-/- or wild-type (WT) mice were treated with vehicle or 2-hydroxybenzylamine (2-HOBA), a dicarbonyl scavenger, for 3 months. Compared to WT, Lnk-/- mice displayed increased AF duration that was prevented by 2-HOBA. In the Lnk-/- atria, action potentials were prolonged with reduced transient outward K+ current, increased late Na+ current, and reduced peak Na+ current, proarrhythmic effects that were inhibited by 2-HOBA. Mitochondrial dysfunction, especially for complex I, was evident in Lnk-/- atria, while scavenging lipid dicarbonyls prevented this abnormality. Tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were elevated in Lnk-/- plasma and atrial tissue, respectively, both of which caused electrical and bioenergetic remodeling in vitro. Inhibition of soluble TNF-α prevented electrical remodeling and AF susceptibility, while IL-1ß inhibition improved mitochondrial respiration but had no effect on AF susceptibility. In a large database of genotyped patients, rs3184504 was associated with AF, as well as AF-related stroke. CONCLUSIONS: These findings identify a novel role for LNK in the pathophysiology of AF in both experimental mice and in humans. Moreover, reactive lipid dicarbonyls are critical to the inflammatory AF substrate in Lnk-/- mice and mediate the proarrhythmic effects of pro-inflammatory cytokines, primarily through electrical remodeling.

2.
Antioxid Redox Signal ; 40(4-6): 292-316, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37125445

RESUMO

Significance: Chronic inflammation has emerged as a major underlying cause of many prevalent conditions in the Western world, including cardiovascular diseases. Although targeting inflammation has emerged as a promising avenue by which to treat cardiovascular disease, it is also associated with increased risk of infection. Recent Advances: Though previously assumed to be passive, resolution has now been identified as an active process, mediated by unique immunoresolving mediators and mechanisms designed to terminate acute inflammation and promote tissue repair. Recent work has determined that failures of resolution contribute to chronic inflammation and the progression of human disease. Specifically, failure to produce pro-resolving mediators and the impaired clearance of dead cells from inflamed tissue have been identified as major mechanisms by which resolution fails in disease. Critical Issues: Drawing from a rapidly expanding body of experimental and clinical studies, we review here what is known about the role of inflammation resolution in arterial hypertension, atherosclerosis, myocardial infarction, and ischemic heart disease. For each, we discuss the involvement of specialized pro-resolving mediators and pro-reparative cell types, including T regulatory cells, myeloid-derived suppressor cells, and macrophages. Future Directions: Pro-resolving therapies offer the promise of limiting chronic inflammation without impairing host defense. Therefore, it is imperative to better understand the mechanisms underlying resolution to identify therapeutic targets. Antioxid. Redox Signal. 40, 292-316.


Assuntos
Aterosclerose , Sistema Cardiovascular , Hipertensão , Infarto do Miocárdio , Humanos , Aterosclerose/metabolismo , Inflamação/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Sistema Cardiovascular/metabolismo , Hipertensão/tratamento farmacológico , Mediadores da Inflamação/metabolismo
3.
JAMA ; 330(23): 2258-2266, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37950918

RESUMO

Importance: Dietary sodium recommendations are debated partly due to variable blood pressure (BP) response to sodium intake. Furthermore, the BP effect of dietary sodium among individuals taking antihypertensive medications is understudied. Objectives: To examine the distribution of within-individual BP response to dietary sodium, the difference in BP between individuals allocated to consume a high- or low-sodium diet first, and whether these varied according to baseline BP and antihypertensive medication use. Design, Setting, and Participants: Prospectively allocated diet order with crossover in community-based participants enrolled between April 2021 and February 2023 in 2 US cities. A total of 213 individuals aged 50 to 75 years, including those with normotension (25%), controlled hypertension (20%), uncontrolled hypertension (31%), and untreated hypertension (25%), attended a baseline visit while consuming their usual diet, then completed 1-week high- and low-sodium diets. Intervention: High-sodium (approximately 2200 mg sodium added daily to usual diet) and low-sodium (approximately 500 mg daily total) diets. Main Outcomes and Measures: Average 24-hour ambulatory systolic and diastolic BP, mean arterial pressure, and pulse pressure. Results: Among the 213 participants who completed both high- and low-sodium diet visits, the median age was 61 years, 65% were female and 64% were Black. While consuming usual, high-sodium, and low-sodium diets, participants' median systolic BP measures were 125, 126, and 119 mm Hg, respectively. The median within-individual change in mean arterial pressure between high- and low-sodium diets was 4 mm Hg (IQR, 0-8 mm Hg; P < .001), which did not significantly differ by hypertension status. Compared with the high-sodium diet, the low-sodium diet induced a decline in mean arterial pressure in 73.4% of individuals. The commonly used threshold of a 5 mm Hg or greater decline in mean arterial pressure between a high-sodium and a low-sodium diet classified 46% of individuals as "salt sensitive." At the end of the first dietary intervention week, the mean systolic BP difference between individuals allocated to a high-sodium vs a low-sodium diet was 8 mm Hg (95% CI, 4-11 mm Hg; P < .001), which was mostly similar across subgroups of age, sex, race, hypertension, baseline BP, diabetes, and body mass index. Adverse events were mild, reported by 9.9% and 8.0% of individuals while consuming the high- and low-sodium diets, respectively. Conclusions and Relevance: Dietary sodium reduction significantly lowered BP in the majority of middle-aged to elderly adults. The decline in BP from a high- to low-sodium diet was independent of hypertension status and antihypertensive medication use, was generally consistent across subgroups, and did not result in excess adverse events. Trial Registration: ClinicalTrials.gov Identifier: NCT04258332.


Assuntos
Pressão Sanguínea , Hipertensão , Sódio na Dieta , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Estudos Cross-Over , Dieta Hipossódica , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Hipertensão/fisiopatologia , Sódio/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/farmacologia , Sódio na Dieta/efeitos adversos , Sódio na Dieta/farmacologia
4.
Clin Sci (Lond) ; 137(16): 1225-1247, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606086

RESUMO

Heart failure with preserved ejection fraction (HFpEF) now accounts for the majority of new heart failure diagnoses and continues to increase in prevalence in the United States. Importantly, HFpEF is a highly morbid, heterogeneous syndrome lacking effective therapies. Inflammation has emerged as a potential contributor to the pathogenesis of HFpEF. Many of the risk factors for HFpEF are also associated with chronic inflammation, such as obesity, hypertension, aging, and renal dysfunction. A large amount of preclinical evidence suggests that immune cells and their associated cytokines play important roles in mediating fibrosis, oxidative stress, metabolic derangements, and endothelial dysfunction, all potentially important processes in HFpEF. How inflammation contributes to HFpEF pathogenesis, however, remains poorly understood. Recently, a variety of preclinical models have emerged which may yield much needed insights into the causal relationships between risk factors and the development of HFpEF, including the role of specific immune cell subsets or inflammatory pathways. Here, we review evidence in animal models and humans implicating inflammation as a mediator of HFpEF and identify gaps in knowledge requiring further study. As the understanding between inflammation and HFpEF evolves, it is hoped that a better understanding of the mechanisms underlying immune cell activation in HFpEF can open up new therapeutic avenues.


Assuntos
Insuficiência Cardíaca , Animais , Humanos , Volume Sistólico , Fatores de Risco , Inflamação , Envelhecimento
5.
Cardiovasc Res ; 119(13): 2312-2328, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37314125

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling. METHODS AND RESULTS: Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including up-regulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programmes and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. CONCLUSIONS: Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.


Assuntos
Cardiomiopatias , Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Hipertensão , Humanos , Camundongos , Animais , Volume Sistólico/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Células Mieloides/metabolismo , Leucócitos/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
6.
Nutr Metab Cardiovasc Dis ; 33(7): 1398-1406, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156670

RESUMO

BACKGROUND AND AIMS: High sodium intake is associated with obesity and insulin resistance, and high extracellular sodium content may induce systemic inflammation, leading to cardiovascular disease. In this study, we aim to investigate whether high tissue sodium accumulation relates with obesity-related insulin resistance and whether the pro-inflammatory effects of excess tissue sodium accumulation may contribute to such association. METHODS AND RESULTS: In a cross-sectional study of 30 obese and 53 non-obese subjects, we measured insulin sensitivity determined as glucose disposal rate (GDR) using hyperinsulinemic euglycemic clamp, and tissue sodium content using 23Na magnetic resonance imaging. Median age was 48 years, 68% were female and 41% were African American. Median (interquartile range) BMI was 33 (31.5, 36.3) and 25 (23.5, 27.2) kg/m2 in the obese and non-obese individuals, respectively. In obese individuals, insulin sensitivity negatively correlated with muscle (r = -0.45, p = 0.01) and skin sodium (r = -0.46, p = 0.01). In interaction analysis among obese individuals, tissue sodium had a greater effect on insulin sensitivity at higher levels of high-sensitivity C-reactive protein (p-interaction = 0.03 and 0.01 for muscle and skin Na+, respectively) and interleukin-6 (p-interaction = 0.024 and 0.003 for muscle and skin Na+, respectively). In interaction analysis of the entire cohort, the association between muscle sodium and insulin sensitivity was stronger with increasing levels of serum leptin (p-interaction = 0.01). CONCLUSIONS: Higher muscle and skin sodium are associated with insulin resistance in obese patients. Whether high tissue sodium accumulation has a mechanistic role in the development of obesity-related insulin resistance through systemic inflammation and leptin dysregulation remains to be examined in future studies. CLINICALTRIALS: gov registration: NCT02236520.


Assuntos
Resistência à Insulina , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Leptina , Glicemia/metabolismo , Insulina , Estudos Transversais , Obesidade , Inflamação/diagnóstico , Sódio
7.
JACC Basic Transl Sci ; 8(3): 319-336, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37034287

RESUMO

Evidence from nonhuman animal models demonstrates an important role for immune cells in hypertension, but immune cell changes in human hypertension are less clear. Using mass cytometry, we demonstrate novel and selective reductions in CCR10+ regulatory T cells (Tregs) and PD-1+CD57-CD8+ memory T cells. RNA sequencing reveals that CCR10+ Tregs exhibit gene expression changes consistent with enhanced immunosuppressive function. In addition, CITE-Seq demonstrates that PD-1+CD57-CD8+ memory T cells exhibit features of T-cell exhaustion. Taken together, these results provide novel evidence for decreases in anti-inflammatory and/or hypofunctional T-cell populations that may contribute to enhanced inflammation in human hypertension.

8.
Kidney360 ; 4(4): e534-e543, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951464

RESUMO

Hypertension is the leading modifiable risk factor of worldwide morbidity and mortality because of its effects on cardiovascular and renal end-organ damage. Unfortunately, BP control is not sufficient to fully reduce the risks of hypertension, underscoring the need for novel therapies that address end-organ damage in hypertension. Over the past several decades, the link between immune activation and hypertension has been well established, but there are still no therapies for hypertension that specifically target the immune system. In this review, we describe the critical role played by T cells in hypertension and hypertensive end-organ damage and outline potential therapeutic targets to modulate T-cell phenotype and function in hypertension without causing global immunosuppression.


Assuntos
Sistema Cardiovascular , Hipertensão , Humanos , Linfócitos T , Hipertensão/tratamento farmacológico , Rim , Fatores de Risco
9.
Circ Res ; 131(9): 731-747, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169218

RESUMO

BACKGROUND: SH2B3 (SH2B adaptor protein 3) is an adaptor protein that negatively regulates cytokine signaling and cell proliferation. A common missense single nucleotide polymorphism in SH2B3 (rs3184504) results in substitution of tryptophan (Trp) for arginine (Arg) at amino acid 262 and is a top association signal for hypertension in human genome-wide association studies. Whether this variant is causal for hypertension, and if so, the mechanism by which it impacts pathogenesis is unknown. METHODS: We used CRISPR-Cas9 technology to create mice homozygous for the major (Arg/Arg) and minor (Trp/Trp) alleles of this SH2B3 polymorphism. Mice underwent angiotensin II (Ang II) infusion to evaluate differences in blood pressure (BP) elevation and end-organ damage including albuminuria and renal fibrosis. Cytokine production and Stat4 phosphorylation was also assessed in Arg/Arg and Trp/Trp T cells. RESULTS: Trp/Trp mice exhibit 10 mmHg higher systolic BP during chronic Ang II infusion compared to Arg/Arg controls. Renal injury and perivascular fibrosis are exacerbated in Trp/Trp mice compared to Arg/Arg controls following Ang II infusion. Renal and ex vivo stimulated splenic CD8+ T cells from Ang II-infused Trp/Trp mice produce significantly more interferon gamma (IFNg) compared to Arg/Arg controls. Interleukin-12 (IL-12)-induced IFNg production is greater in Trp/Trp compared to Arg/Arg CD8+ T cells. In addition, IL-12 enhances Stat4 phosphorylation to a greater degree in Trp/Trp compared to Arg/Arg CD8+ T cells, suggesting that Trp-encoding SH2B3 exhibits less negative regulation of IL-12 signaling to promote IFNg production. Finally, we demonstrated that a multi-SNP model genetically predicting increased SH2B3 expression in lymphocytes is inversely associated with hypertension and hypertensive chronic kidney disease in humans.. CONCLUSIONS: Taken together, these results suggest that the Trp encoding allele of rs3184504 is causal for BP elevation and renal dysfunction, in part through loss of SH2B3-mediated repression of T cell IL-12 signaling leading to enhanced IFNg production.


Assuntos
Hipertensão Renal , Hipertensão , Proteínas Adaptadoras de Transdução de Sinal , Angiotensina II/metabolismo , Angiotensina II/toxicidade , Animais , Arginina/efeitos adversos , Arginina/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fibrose , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/metabolismo , Hipertensão Renal/metabolismo , Interferon gama/metabolismo , Interleucina-12/efeitos adversos , Interleucina-12/metabolismo , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Triptofano
10.
J Am Heart Assoc ; 11(8): e022723, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35435017

RESUMO

Background Sodium (Na+) stored in skin and muscle tissue is associated with essential hypertension. Sodium magnetic resonance imaging is a validated method of quantifying tissue stores of Na+. In this study, we evaluated tissue Na+ in patients with elevated blood pressure or stage I hypertension in response to diuretic therapy or low Na+ diet. Methods and Results In a double-blinded, placebo-controlled trial, patients with systolic blood pressure 120 to 139 mm Hg were randomized to low sodium diet (<2 g of sodium), chlorthalidone, spironolactone, or placebo for 8 weeks. Muscle and skin Na+ using sodium magnetic resonance imaging and pulse wave velocity were assessed at the beginning and end of the study. Ninety-eight patients were enrolled to undergo baseline measurements and 54 completed randomization. Median baseline muscle and skin Na+ in 98 patients were 16.4 mmol/L (14.9, 18.9) and 13.1 mmol/L (11.1, 16.1), respectively. After 8 weeks, muscle Na+ increased in the diet and chlorthalidone arms compared with placebo. Skin sodium was decreased only in the diet arm compared with placebo. These associations remained significant after adjustment for age, sex, body mass index, systolic blood pressure, and urinary sodium. No changes were observed in pulse wave velocity among the different groups when compared with placebo. Conclusions Diuretic therapy for 8 weeks did not decrease muscle or skin sodium or improve pulse wave velocity in patients with elevated blood pressure or stage I hypertension. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02236520.


Assuntos
Hipertensão , Sódio , Pressão Sanguínea , Clortalidona , Diuréticos , Método Duplo-Cego , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Análise de Onda de Pulso
11.
AIDS ; 36(7): 963-973, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35165215

RESUMO

OBJECTIVE: Chronic inflammation contributes to the high burden of cardiovascular disease (CVD) in persons with HIV (PWH). HIV has broad effects on innate and adaptive immune cells, including innate lymphoid cells (ILCs) and CD4+ T-helper cells. At present, the relationship between CVD and plasma cytokines reflecting ILC/T-helper responses in PWH is not well defined. We investigated relationships between plasma cytokines and subclinical atherosclerosis. DESIGN: A cross-sectional study. METHODS: We recruited 70 PWH on a single antiretroviral regimen (efavirenz, teno- fovir, and emtricitabine) with at least 12 months of suppressed viremia and 30 HIVnegative controls. We quantified plasma cytokines and chemokines, including inter- feron-g, interleukin (IL)-4, IL-13, and IL-17A, markers of macrophage activation, and markers of endothelial activation using multiplex assays and ELISA. Cytokines were grouped using Ward's hierarchical clustering. Brachial artery flow-mediated dilation (FMD) and carotid plaque burden were determined using ultrasound. Multivariable linear regression and negative binomial regression analyses were used to assess the relationships of plasma biomarkers and endpoints adjusted for CVD risk factors. RESULTS: We identified three distinct clusters in PWH, one containing Th1/Th2/ILC1/ ILC2 type cytokines, one with Th17/ILC3/macrophage-related cytokines, and a less specific third cluster. Lower FMD was associated with higher plasma IL-17A and macrophage inflammatory protein-1 a. In contrast, IL-4, a Th2/ILC2 type cytokine, was associated with carotid plaque. When HIV-negative controls were added to the models clustering was more diffuse, and these associations were attenuated or absent. CONCLUSION: Th17/ILC3 and Th2/ILC2-mediated immune mechanisms may have distinct roles in endothelial dysfunction and atherosclerotic plaque formation, respectively, in PWH.


Assuntos
Aterosclerose , Infecções por HIV , Placa Aterosclerótica , Aterosclerose/complicações , Biomarcadores , Estudos Transversais , Citocinas , Dilatação , Infecções por HIV/complicações , Humanos , Imunidade Inata , Interleucina-17 , Interleucina-4 , Células Th17
12.
Circ Res ; 128(7): 908-933, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793336

RESUMO

Elevated cardiovascular risk including stroke, heart failure, and heart attack is present even after normalization of blood pressure in patients with hypertension. Underlying immune cell activation is a likely culprit. Although immune cells are important for protection against invading pathogens, their chronic overactivation may lead to tissue damage and high blood pressure. Triggers that may initiate immune activation include viral infections, autoimmunity, and lifestyle factors such as excess dietary salt. These conditions activate the immune system either directly or through their impact on the gut microbiome, which ultimately produces chronic inflammation and hypertension. T cells are central to the immune responses contributing to hypertension. They are activated in part by binding specific antigens that are presented in major histocompatibility complex molecules on professional antigen-presenting cells, and they generate repertoires of rearranged T-cell receptors. Activated T cells infiltrate tissues and produce cytokines including interleukin 17A, which promote renal and vascular dysfunction and end-organ damage leading to hypertension. In this comprehensive review, we highlight environmental, genetic, and microbial associated mechanisms contributing to both innate and adaptive immune cell activation leading to hypertension. Targeting the underlying chronic immune cell activation in hypertension has the potential to mitigate the excess cardiovascular risk associated with this common and deadly disease.


Assuntos
Hipertensão/imunologia , Imunidade Celular/fisiologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Anti-Hipertensivos/uso terapêutico , Linfócitos B/imunologia , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Resistência a Medicamentos , Feminino , Microbioma Gastrointestinal/imunologia , Fatores de Risco de Doenças Cardíacas , Interações entre Hospedeiro e Microrganismos , Humanos , Hipertensão/tratamento farmacológico , Fenômenos do Sistema Imunitário , Imunidade Inata , Inflamassomos/imunologia , Inflamação/genética , Inflamação/imunologia , Macrófagos/imunologia , Masculino , Monócitos/imunologia , Fatores Sexuais , Cloreto de Sódio na Dieta/efeitos adversos , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Viroses/imunologia
13.
Curr Hypertens Rep ; 23(3): 13, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666761

RESUMO

PURPOSE OF REVIEW: To summarize key advances in our understanding of the role of interleukin 17A (IL-17A) in the pathogenesis of hypertension and highlight important areas for future research and clinical translation. RECENT FINDINGS: While T helper 17 (Th17) cells are major producers of IL-17A, there are several additional innate and adaptive immune cell sources including gamma-delta T cells, innate lymphoid cells, and natural killer cells. IL-17A promotes an increase in blood pressure through multiple mechanisms including inhibiting endothelial nitric oxide production, increasing reactive oxygen species formation, promoting vascular fibrosis, and enhancing renal sodium retention and glomerular injury. IL-17A production from Th17 cells is increased by high salt conditions in vitro and in vivo. There is also emerging data linking salt, the gut microbiome, and intestinal T cell IL-17A production. Novel therapeutics targeting IL-17A signaling are approved for the treatment of autoimmune diseases and show promise in both animal models of hypertension and human studies. Hypertensive stimuli enhance IL-17A production. IL-17A is a key mediator of renal and vascular dysfunction in hypertensive mouse models and correlates with hypertension in humans. Large randomized clinical trials are needed to determine whether targeting IL-17A might be an effective adjunct treatment for hypertension and its associated end-organ dysfunction.


Assuntos
Hipertensão , Interleucina-17 , Animais , Pressão Sanguínea , Humanos , Hipertensão/tratamento farmacológico , Imunidade Inata , Linfócitos
14.
Arterioscler Thromb Vasc Biol ; 41(4): 1459-1473, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567869
15.
Cardiovasc Res ; 117(4): 1217-1228, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32609312

RESUMO

AIMS: Elevated serum immunoglobulins have been associated with experimental and human hypertension for decades but whether immunoglobulins and B cells play a causal role in hypertension pathology is unclear. In this study, we sought to determine the role of B cells and high-affinity class-switched immunoglobulins on hypertension and hypertensive end-organ damage to determine if they might represent viable therapeutic targets for this disease. METHODS AND RESULTS: We purified serum immunoglobulin G (IgG) from mice exposed to vehicle or angiotensin (Ang) II to induce hypertension and adoptively transferred these to wild type (WT) recipient mice receiving a subpressor dose of Ang II. We found that transfer of IgG from hypertensive animals does not affect blood pressure, endothelial function, renal inflammation, albuminuria, or T cell-derived cytokine production compared with transfer of IgG from vehicle infused animals. As an alternative approach to investigate the role of high-affinity, class-switched immunoglobulins, we studied mice with genetic deletion of activation-induced deaminase (Aicda-/-). These mice have elevated levels of IgM but virtual absence of class-switched immunoglobulins such as IgG subclasses and IgA. Neither male nor female Aicda-/- mice were protected from Ang II-induced hypertension and renal/vascular damage. To determine if IgM or non-immunoglobulin-dependent innate functions of B cells play a role in hypertension, we studied mice with severe global B-cell deficiency due to deletion of the membrane exon of the IgM heavy chain (µMT-/-). µMT-/- mice were also not protected from hypertension or end-organ damage induced by Ang II infusion or deoxycorticosterone acetate-salt treatment. CONCLUSIONS: These results suggest that B cells and serum immunoglobulins do not play a causal role in hypertension pathology.


Assuntos
Pressão Sanguínea/imunologia , Hipertensão/imunologia , Switching de Imunoglobulina , Imunoglobulina G/imunologia , Células B de Memória/imunologia , Angiotensina II , Animais , Afinidade de Anticorpos , Aorta/imunologia , Aorta/metabolismo , Aorta/patologia , Células Cultivadas , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Acetato de Desoxicorticosterona , Modelos Animais de Doenças , Feminino , Hipertensão/sangue , Hipertensão/genética , Hipertensão/fisiopatologia , Imunoglobulina G/sangue , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Imunoglobulina M/genética , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Rim/imunologia , Rim/metabolismo , Rim/patologia , Masculino , Células B de Memória/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cloreto de Sódio na Dieta
16.
FASEB J ; 34(12): 15946-15960, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33015868

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the global pandemic of coronavirus disease-2019 (COVID-19). SARS-CoV-2 is a zoonotic disease, but little is known about variations in species susceptibility that could identify potential reservoir species, animal models, and the risk to pets, wildlife, and livestock. Certain species, such as domestic cats and tigers, are susceptible to SARS-CoV-2 infection, while other species such as mice and chickens are not. Most animal species, including those in close contact with humans, have unknown susceptibility. Hence, methods to predict the infection risk of animal species are urgently needed. SARS-CoV-2 spike protein binding to angiotensin-converting enzyme 2 (ACE2) is critical for viral cell entry and infection. Here we integrate species differences in susceptibility with multiple in-depth structural analyses to identify key ACE2 amino acid positions including 30, 83, 90, 322, and 354 that distinguish susceptible from resistant species. Using differences in these residues across species, we developed a susceptibility score that predicts an elevated risk of SARS-CoV-2 infection for multiple species including horses and camels. We also demonstrate that SARS-CoV-2 is nearly optimal for binding ACE2 of humans compared to other animals, which may underlie the highly contagious transmissibility of this virus among humans. Taken together, our findings define potential ACE2 and SARS-CoV-2 residues for therapeutic targeting and identification of animal species on which to focus research and protection measures for environmental and public health.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19/genética , Predisposição Genética para Doença , Receptores Virais/química , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Animais , Camelus , Glicosilação , Cavalos , Humanos , Modelos Moleculares , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Virais/genética , SARS-CoV-2 , Alinhamento de Sequência , Especificidade da Espécie
17.
Am J Physiol Cell Physiol ; 319(4): C757-C770, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845718

RESUMO

Extracellular fluid (ECF) potassium concentration ([K+]) is maintained by adaptations of kidney and skeletal muscle, responses heretofore studied separately. We aimed to determine how these organ systems work in concert to preserve ECF [K+] in male C57BL/6J mice fed a K+-deficient diet (0K) versus 1% K+ diet (1K) for 10 days (n = 5-6/group). During 0K feeding, plasma [K+] fell from 4.5 to 2 mM; hindlimb muscle (gastrocnemius and soleus) lost 28 mM K+ (from 115 ± 2 to 87 ± 2 mM) and gained 27 mM Na+ (from 27 ± 0.4 to 54 ± 2 mM). Doubling of muscle tissue [Na+] was not associated with inflammation, cytokine production or hypertension as reported by others. Muscle transporter adaptations in 0K- versus 1K-fed mice, assessed by immunoblot, included decreased sodium pump α2-ß2 subunits, decreased K+-Cl- cotransporter isoform 3, and increased phosphorylated (p) Na+,K+,2Cl- cotransporter isoform 1 (NKCC1p), Ste20/SPS-1-related proline-alanine rich kinase (SPAKp), and oxidative stress-responsive kinase 1 (OSR1p) consistent with intracellular fluid (ICF) K+ loss and Na+ gain. Renal transporters' adaptations, effecting a 98% reduction in K+ excretion, included two- to threefold increased phosphorylated Na+-Cl- cotransporter (NCCp), SPAKp, and OSR1p abundance, limiting Na+ delivery to epithelial Na+ channels where Na+ reabsorption drives K+ secretion; and renal K sensor Kir 4.1 abundance fell 25%. Mass balance estimations indicate that over 10 days of 0K feeding, mice lose ~48 µmol K+ into the urine and muscle shifts ~47 µmol K+ from ICF to ECF, illustrating the importance of the concerted responses during K+ deficiency.


Assuntos
Adaptação Fisiológica/genética , Hipertensão/genética , Rim/metabolismo , Potássio/metabolismo , Animais , Pressão Sanguínea/genética , Canais Epiteliais de Sódio/genética , Líquido Extracelular/metabolismo , Humanos , Hipertensão/patologia , Rim/patologia , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fosforilação/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto/genética , Simportadores/genética , Fatores de Transcrição/genética , Cotransportadores de K e Cl-
18.
JACC Basic Transl Sci ; 5(6): 602-615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613146

RESUMO

Oxidative damage is implicated in atrial fibrillation (AF), but antioxidants are ineffective therapeutically. The authors tested the hypothesis that highly reactive lipid dicarbonyl metabolites, or isolevuglandins (IsoLGs), are principal drivers of AF during hypertension. In a hypertensive murine model and stretched atriomyocytes, the dicarbonyl scavenger 2-hydroxybenzylamine (2-HOBA) prevented IsoLG adducts and preamyloid oligomers (PAOs), and AF susceptibility, whereas the ineffective analog 4-hydroxybenzylamine (4-HOBA) had minimal effect. Natriuretic peptides generated cytotoxic oligomers, a process accelerated by IsoLGs, contributing to atrial PAO formation. These findings support the concept of pre-emptively scavenging reactive downstream oxidative stress mediators as a potential therapeutic approach to prevent AF.

19.
Cardiovasc Res ; 116(10): 1666-1687, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32352535

RESUMO

The novel coronavirus disease (COVID-19) outbreak, caused by SARS-CoV-2, represents the greatest medical challenge in decades. We provide a comprehensive review of the clinical course of COVID-19, its comorbidities, and mechanistic considerations for future therapies. While COVID-19 primarily affects the lungs, causing interstitial pneumonitis and severe acute respiratory distress syndrome (ARDS), it also affects multiple organs, particularly the cardiovascular system. Risk of severe infection and mortality increase with advancing age and male sex. Mortality is increased by comorbidities: cardiovascular disease, hypertension, diabetes, chronic pulmonary disease, and cancer. The most common complications include arrhythmia (atrial fibrillation, ventricular tachyarrhythmia, and ventricular fibrillation), cardiac injury [elevated highly sensitive troponin I (hs-cTnI) and creatine kinase (CK) levels], fulminant myocarditis, heart failure, pulmonary embolism, and disseminated intravascular coagulation (DIC). Mechanistically, SARS-CoV-2, following proteolytic cleavage of its S protein by a serine protease, binds to the transmembrane angiotensin-converting enzyme 2 (ACE2) -a homologue of ACE-to enter type 2 pneumocytes, macrophages, perivascular pericytes, and cardiomyocytes. This may lead to myocardial dysfunction and damage, endothelial dysfunction, microvascular dysfunction, plaque instability, and myocardial infarction (MI). While ACE2 is essential for viral invasion, there is no evidence that ACE inhibitors or angiotensin receptor blockers (ARBs) worsen prognosis. Hence, patients should not discontinue their use. Moreover, renin-angiotensin-aldosterone system (RAAS) inhibitors might be beneficial in COVID-19. Initial immune and inflammatory responses induce a severe cytokine storm [interleukin (IL)-6, IL-7, IL-22, IL-17, etc.] during the rapid progression phase of COVID-19. Early evaluation and continued monitoring of cardiac damage (cTnI and NT-proBNP) and coagulation (D-dimer) after hospitalization may identify patients with cardiac injury and predict COVID-19 complications. Preventive measures (social distancing and social isolation) also increase cardiovascular risk. Cardiovascular considerations of therapies currently used, including remdesivir, chloroquine, hydroxychloroquine, tocilizumab, ribavirin, interferons, and lopinavir/ritonavir, as well as experimental therapies, such as human recombinant ACE2 (rhACE2), are discussed.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus , Miocardite , Pandemias , Pneumonia Viral , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Humanos , Miocardite/diagnóstico , Miocardite/tratamento farmacológico , Miocardite/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Medição de Risco , SARS-CoV-2
20.
Arterioscler Thromb Vasc Biol ; 40(6): e153-e165, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32295422

RESUMO

OBJECTIVE: Macrophages have been described in calcific aortic valve disease, but it is unclear if they promote or counteract calcification. We aimed to determine how macrophages are involved in calcification using the Notch1+/- model of calcific aortic valve disease. Approach and Results: Macrophages in wild-type and Notch1+/- murine aortic valves were characterized by flow cytometry. Macrophages in Notch1+/- aortic valves had increased expression of MHCII (major histocompatibility complex II). We then used bone marrow transplants to test if differences in Notch1+/- macrophages drive disease. Notch1+/- mice had increased valve thickness, macrophage infiltration, and proinflammatory macrophage maturation regardless of transplanted bone marrow genotype. In vitro approaches confirm that Notch1+/- aortic valve cells promote macrophage invasion as quantified by migration index and proinflammatory phenotypes as quantified by Ly6C and CCR2 positivity independent of macrophage genotype. Finally, we found that macrophage interaction with aortic valve cells promotes osteogenic, but not dystrophic, calcification and decreases abundance of the STAT3ß isoform. CONCLUSIONS: This study reveals that Notch1+/- aortic valve disease involves increased macrophage recruitment and maturation driven by altered aortic valve cell secretion, and that increased macrophage recruitment promotes osteogenic calcification and alters STAT3 splicing. Further investigation of STAT3 and macrophage-driven inflammation as therapeutic targets in calcific aortic valve disease is warranted.


Assuntos
Estenose da Valva Aórtica/patologia , Valva Aórtica/patologia , Calcinose/patologia , Macrófagos/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Valva Aórtica/imunologia , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/imunologia , Estenose da Valva Aórtica/fisiopatologia , Transplante de Medula Óssea , Calcinose/imunologia , Calcinose/fisiopatologia , Movimento Celular , Óxidos S-Cíclicos/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Genótipo , Humanos , Inflamação/patologia , Macrófagos/química , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese , Receptor Notch1/análise , Receptor Notch1/genética , Receptor Notch1/fisiologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...