Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
3.
Environ Health Perspect ; 131(10): 105001, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37902675

RESUMO

BACKGROUND: The International Agency for Research on Cancer (IARC) Monographs program assembles expert working groups who publish a critical review and evaluation of data on agents of interest. These comprehensive reviews provide a unique opportunity to identify research needs to address classification uncertainties. A multidisciplinary expert review and workshop held in 2009 identified research gaps and needs for 20 priority occupational chemicals, metals, dusts, and physical agents, with the goal of stimulating advances in epidemiological studies of cancer and carcinogen mechanisms. Overarching issues were also described. OBJECTIVES: In this commentary we review the current status of the evidence for the 20 priority agents identified in 2009. We examine whether identified Research Recommendations for each agent were addressed and their potential impact on resolving classification uncertainties. METHODS: We reviewed the IARC classifications of each of the 20 priority agents and identified major new epidemiological and human mechanistic studies published since the last evaluation. Information sources were either the published Monograph for agents that have been reevaluated or, for agents not yet reevaluated, Advisory Group reports and literature searches. Findings are described in view of recent methodological developments in Monographs evidence evaluation processes. DISCUSSION: The majority of the 20 priority agents were reevaluated by IARC since 2009. The overall carcinogen classifications of 9 agents advanced, and new cancer sites with either "sufficient" or "limited" evidence of carcinogenicity were also identified for 9 agents. Examination of published findings revealed whether evidence gaps and Research Recommendations have been addressed and highlighted remaining uncertainties. During the past decade, new research addressed a range of the 2009 recommendations and supported updated classifications for priority agents. This supports future efforts to systematically apply findings of Monograph reviews to identify research gaps and priorities relevant to evaluation criteria established in the updated IARC Monograph Preamble. https://doi.org/10.1289/EHP12547.


Assuntos
Biologia , Neoplasias , Humanos , Carcinógenos/toxicidade , Poeira , Lacunas de Evidências , Neoplasias/induzido quimicamente , Neoplasias/epidemiologia
6.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361516

RESUMO

With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.


Assuntos
Carcinógenos , Transcriptoma , Humanos , Carcinógenos/toxicidade , Bioensaio , Carcinogênese , Testes de Carcinogenicidade/métodos
7.
Regul Toxicol Pharmacol ; 135: 105261, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36103951

RESUMO

New Approach Methodologies (NAMs) are considered to include any in vitro, in silico or chemistry-based method, as well as the strategies to implement them, that may provide information that could inform chemical safety assessment. Current chemical legislation in the European Union is limited in its acceptance of the widespread use of NAMs. The European Partnership for Alternative Approaches to Animal Testing (EPAA) therefore convened a 'Deep Dive Workshop' to explore the use of NAMs in chemical safety assessment, the aim of which was to support regulatory decisions, whilst intending to protect human health. The workshop recognised that NAMs are currently used in many industrial sectors, with some considered as fit for regulatory purpose. Moreover, the workshop identified key discussion points that can be addressed to increase the use and regulatory acceptance of NAMs. These are based on the changes needed in frameworks for regulatory requirements and the essential needs in education, training and greater stakeholder engagement as well the gaps in the scientific basis of NAMs.


Assuntos
Alternativas aos Testes com Animais , Testes de Toxicidade , Animais , União Europeia , Humanos , Indústrias , Medição de Risco , Testes de Toxicidade/métodos
10.
Comput Toxicol ; 242022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36818760

RESUMO

Acute toxicity in silico models are being used to support an increasing number of application areas including (1) product research and development, (2) product approval and registration as well as (3) the transport, storage and handling of chemicals. The adoption of such models is being hindered, in part, because of a lack of guidance describing how to perform and document an in silico analysis. To address this issue, a framework for an acute toxicity hazard assessment is proposed. This framework combines results from different sources including in silico methods and in vitro or in vivo experiments. In silico methods that can assist the prediction of in vivo outcomes (i.e., LD50) are analyzed concluding that predictions obtained using in silico approaches are now well-suited for reliably supporting assessment of LD50-based acute toxicity for the purpose of GHS classification. A general overview is provided of the endpoints from in vitro studies commonly evaluated for predicting acute toxicity (e.g., cytotoxicity/cytolethality as well as assays targeting specific mechanisms). The increased understanding of pathways and key triggering mechanisms underlying toxicity and the increased availability of in vitro data allow for a shift away from assessments solely based on endpoints such as LD50, to mechanism-based endpoints that can be accurately assessed in vitro or by using in silico prediction models. This paper also highlights the importance of an expert review of all available information using weight-of-evidence considerations and illustrates, using a series of diverse practical use cases, how in silico approaches support the assessment of acute toxicity.

11.
Arch Toxicol ; 95(6): 1867-1897, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851225

RESUMO

The EU Directive 2010/63/EU   on the protection of animals used for scientific purposes and other EU regulations, such as REACH and the Cosmetic Products Regulation advocate for a change in the way toxicity testing is conducted. Whilst the Cosmetic Products Regulation bans animal testing altogether, REACH aims for a progressive shift from in vivo testing towards quantitative in vitro and computational approaches. Several endpoints can already be addressed using non-animal approaches including skin corrosion and irritation, serious eye damage and irritation, skin sensitisation, and mutagenicity and genotoxicity. However, for systemic effects such as acute toxicity, repeated dose toxicity and reproductive and developmental toxicity, evaluation of chemicals under REACH still heavily relies on animal tests. Here we summarise current EU regulatory requirements for the human health assessment of chemicals under REACH and the Cosmetic Products Regulation, considering the more critical endpoints and identifying the main challenges in introducing alternative methods into regulatory testing practice. This supports a recent initiative taken by the International Cooperation on Alternative Test Methods (ICATM) to summarise current regulatory requirements specific for the assessment of chemicals and cosmetic products for several human health-related endpoints, with the aim of comparing different jurisdictions and coordinating the promotion and ultimately the implementation of non-animal approaches worldwide. Recent initiatives undertaken at European level to promote the 3Rs and the use of alternative methods in current regulatory practice are also discussed.


Assuntos
Alternativas aos Testes com Animais/legislação & jurisprudência , Cosméticos/legislação & jurisprudência , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/métodos , Animais , Cosméticos/toxicidade , União Europeia , Humanos , Cooperação Internacional , Medição de Risco/legislação & jurisprudência , Medição de Risco/métodos
12.
Arch Toxicol ; 95(6): 1971-1993, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830278

RESUMO

In view of the need to enhance the assessment of consumer products called for in the EU Chemicals Strategy for Sustainability, we developed a methodology for evaluating hazard by combining information across different systemic toxicity endpoints and integrating the information with new approach methodologies. This integrates mechanistic information with a view to avoiding redundant in vivo studies, minimising reliance on apical endpoint tests and ultimately devising efficient testing strategies. Here, we present the application of our methodology to carcinogenicity assessment, mapping the available information from toxicity test methods across endpoints to the key characteristics of carcinogens. Test methods are deconstructed to allow the information they provide to be organised in a systematic way, enabling the description of the toxicity mechanisms leading to the adverse outcome. This integrated approach provides a flexible and resource-efficient means of fully exploiting test methods for which test guidelines are available to fulfil regulatory requirements for systemic toxicity assessment as well as identifying where new methods can be integrated.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Medição de Risco/métodos , Testes de Toxicidade/métodos , Animais , Determinação de Ponto Final , União Europeia , Humanos
13.
Comput Toxicol ; 202021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35368437

RESUMO

Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.

15.
Crit Rev Toxicol ; 50(9): 725-739, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33236972

RESUMO

Chemical substances are subjected to assessment of genotoxic and carcinogenic effects before being marketed to protect man and the environment from health risks. For agrochemicals, the long-term rodent carcinogenicity study is currently required from a regulatory perspective. Although it is the current mainstay for the detection of nongenotoxic carcinogens, carcinogenicity studies are shown to have prominent weaknesses and are subject to ethical and scientific debate. A transition toward a mechanism-based weight-of-evidence approach is considered a requirement to enhance the prediction of carcinogenic potential for environmental (agro)chemicals. The resulting approach should make optimal use of innovative (computational) tools and be less animal demanding. To identify the various mode of actions (MOAs) underlying the nongenotoxic carcinogenic potential of agrochemicals, we conducted an extensive analysis of 411 unique agrochemicals that have been evaluated for carcinogenicity by the United States Environmental Protection Agency (US EPA) and the European Chemicals Agency (ECHA). About one-third of these substances could be categorized as nongenotoxic carcinogens with an average of approximately two tumor types per substance, observed in a variety of organs. For two-third of the tumor cases, an underlying MOA (network) could be identified. This analysis demonstrates that a limited set of MOA (networks) is underlying nongenotoxic carcinogenicity of agrochemicals, illustrating that the transition toward a MOA-driven approach appears manageable. Ultimately the approach should cover relevant MOAs and its associated key events; this will also facilitate the evaluation of the human relevance. This manuscript describes the results of the analysis while identifying knowledge gaps and necessities to achieve a mechanism-based weight-of-evidence approach.


Assuntos
Agroquímicos/toxicidade , Carcinógenos/toxicidade , Animais , Carcinogênese , Testes de Carcinogenicidade , Dano ao DNA , Humanos , Neoplasias , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
16.
Regul Toxicol Pharmacol ; 118: 104789, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33035627

RESUMO

Currently the only methods for non-genotoxic carcinogenic hazard assessment accepted by most regulatory authorities are lifetime carcinogenicity studies. However, these involve the use of large numbers of animals and the relevance of their predictive power and results has been scientifically challenged. With increased availability of innovative test methods and enhanced understanding of carcinogenic processes, it is believed that tumour formation can now be better predicted using mechanistic information. A workshop organised by the European Partnership on Alternative Approaches to Animal Testing brought together experts to discuss an alternative, mechanism-based approach for cancer risk assessment of agrochemicals. Data from a toolbox of test methods for detecting modes of action (MOAs) underlying non-genotoxic carcinogenicity are combined with information from subchronic toxicity studies in a weight-of-evidence approach to identify carcinogenic potential of a test substance. The workshop included interactive sessions to discuss the approach using case studies. These showed that fine-tuning is needed, to build confidence in the proposed approach, to ensure scientific correctness, and to address different regulatory needs. This novel approach was considered realistic, and its regulatory acceptance and implementation can be facilitated in the coming years through continued dialogue between all stakeholders and building confidence in alternative approaches.


Assuntos
Agroquímicos/efeitos adversos , Alternativas aos Testes com Animais , Testes de Carcinogenicidade , Transformação Celular Neoplásica/induzido quimicamente , Neoplasias/induzido quimicamente , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Congressos como Assunto , Humanos , Testes de Mutagenicidade , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Medição de Risco , Testes de Toxicidade Subcrônica , Toxicocinética
17.
ALTEX ; 37(4): 519-531, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32735683

RESUMO

To develop and evaluate scientifically robust and innovative approaches for the safety assessment of chemicals across multiple regulatory sectors, the EU Reference Laboratory for alternatives to animal testing (EURL ECVAM) has started a project to explore how to better use the available information, including that from existing animal studies. The aim is to minimize reliance on in vivo testing to avoid redundancy and to facilitate the integration of novel non-animal methods in the regulatory setting with the ultimate goal of designing sustainable testing strategies. In this thought-starter paper, we present a number of examples to illustrate and trigger further discussions within the scientific and regulatory communities on ways to extrapolate useful information for predicting toxicity from one toxicity endpoint to another or across endpoints based on mechanistic information.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32660827

RESUMO

The bacterial reverse mutation test (Ames test) is the most commonly used genotoxicity test; it is a primary component of the chemical safety assessment data required by regulatory agencies worldwide. Within the current accepted in vitro genotoxicity test battery, it is considered capable of revealing DNA reactivity, and identifying substances that can produce gene mutations via different mechanisms. The previously published consolidated EURL ECVAM Genotoxicity and Carcinogenicity Database, which includes substances that elicited a positive response in the Ames test, constitutes a collection of data that serves as a reference for a number of regulatory activities in the area of genotoxicity testing. Consequently, we considered it important to expand the database to include substances that fail to elicit a positive response in the Ames test, i.e., Ames negative substances. Here, we describe a curated collection of 211 Ames negative substances, with a summary of complementary data available for other genotoxicity endpoints in vitro and in vivo, plus available carcinogenicity data. A descriptive analysis of the data is presented. This includes a representation of the chemical space formed by the Ames-negative database with respect to other substances (e.g. REACH registered substances, approved drugs, pesticides, etc.) and a description of the organic functional groups found in the database. We also provide some suggestions on further analyses that could be made.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Bases de Dados Factuais/normas , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Resultados Negativos/normas , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Gerenciamento de Dados/normas , Humanos
19.
Arch Toxicol ; 94(8): 2899-2923, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32594184

RESUMO

While regulatory requirements for carcinogenicity testing of chemicals vary according to product sector and regulatory jurisdiction, the standard approach starts with a battery of genotoxicity tests (which include mutagenicity assays). If any of the in vivo genotoxicity tests are positive, a lifetime rodent cancer bioassay may be requested, but under most chemical regulations (except plant protection, biocides, pharmaceuticals), this is rare. The decision to conduct further testing based on genotoxicity test outcomes creates a regulatory gap for the identification of non-genotoxic carcinogens (NGTxC). With the objective of addressing this gap, in 2016, the Organization of Economic Cooperation and Development (OECD) established an expert group to develop an integrated approach to the testing and assessment (IATA) of NGTxC. Through that work, a definition of NGTxC in a regulatory context was agreed. Using the adverse outcome pathway (AOP) concept, various cancer models were developed, and overarching mechanisms and modes of action were identified. After further refining and structuring with respect to the common hallmarks of cancer and knowing that NGTxC act through a large variety of specific mechanisms, with cell proliferation commonly being a unifying element, it became evident that a panel of tests covering multiple biological traits will be needed to populate the IATA. Consequently, in addition to literature and database investigation, the OECD opened a call for relevant assays in 2018 to receive suggestions. Here, we report on the definition of NGTxC, on the development of the overarching NGTxC IATA, and on the development of ranking parameters to evaluate the assays. Ultimately the intent is to select the best scoring assays for integration in an NGTxC IATA to better identify carcinogens and reduce public health hazards.


Assuntos
Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Animais , Consenso , Humanos , Reprodutibilidade dos Testes , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...