Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 87(8)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215499

RESUMO

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.

2.
Rev Sci Instrum ; 89(2): 025107, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495843

RESUMO

In this work, we address the advantages, limitations, and technical subtleties of employing field programmable gate array (FPGA)-based digital servos for high-bandwidth feedback control of lasers in atomic, molecular, and optical physics experiments. Specifically, we provide the results of benchmark performance tests in experimental setups including noise, bandwidth, and dynamic range for two digital servos built with low and mid-range priced FPGA development platforms. The digital servo results are compared to results obtained from a commercially available state-of-the-art analog servo using the same plant for control (intensity stabilization). The digital servos have feedback bandwidths of 2.5 MHz, limited by the total signal latency, and we demonstrate improvements beyond the transfer function offered by the analog servo including a three-pole filter and a two-pole filter with phase compensation to suppress resonances. We also discuss limitations of our FPGA-servo implementation and general considerations when designing and using digital servos.

3.
Rev Sci Instrum ; 87(4): 043111, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27131658

RESUMO

We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of (6)Li and (85)Rb and achieve magneto-optical trap (MOT) loading rates equivalent to that reported in prior work on dual species (Rb+Li) Zeeman slowers operating at the same oven temperatures. Key design choices, including thermally separating the effusive sources and using a segmented coil design to enable computer control of the magnetic field profile, ensure that the apparatus can be easily modified to slow other atomic species. By performing the final slowing using the quadrupole magnetic field of the MOT, we are able to shorten our Zeeman slower length making for a more compact system without compromising performance. We outline the construction and analyze the emission properties of our effusive sources. We also verify the performance of the source and slower, and we observe sequential loading rates of 12 × 10(8) atoms/s for a Rb oven temperature of 140 °C and 1.1 × 10(8) atoms/s for a Li reservoir at 460 °C, corresponding to reservoir lifetimes for continuous operation of 10 and 4 years, respectively.

4.
Rev Sci Instrum ; 87(3): 033113, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27036764

RESUMO

We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an indium tin oxide coated dielectric substrate inside a stack of dielectric substrates, which prevents ion avalanche resulting from Townsend discharge. With this design, we observe no arcing for fields of up to 120 kV/cm. Using these plates, we directly verify the production of electric fields up to 18 kV/cm inside a quartz vacuum cell by a spectroscopic measurement of the dc Stark shift of the 5(2)S(1/2) → 5(2)P(3/2) transition for a cloud of laser cooled rubidium atoms. We also report on the shielding of the electric field and on the residual electric fields that persist within the vacuum cell once the electrodes are discharged. In addition, we discuss observed atom loss that results from the motion of free charges within the vacuum. The observed asymmetry of these phenomena on the bias of the electrodes suggests that field emission of electrons within the vacuum is primarily responsible for these effects and may indicate a way of mitigating them.

5.
Opt Lett ; 40(18): 4372-5, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371939

RESUMO

We present a method of phase locking any number of continuous-wave lasers to an optical frequency comb (OFC) that enables independent frequency positioning and control of each laser while still maintaining lock to the OFC. The scheme employs an acousto-optic modulator (AOM) in a double-pass configuration added to each laser before its light is compared by optical heterodyne with the comb. The only requirement is that the tuning bandwidth of the double-pass AOM setup be larger than half the OFC repetition rate. We demonstrate this scheme and achieve an arbitrary frequency tuning precision, a tuning rate of 200 MHz/s, and a readout precision at the 1 kHz level.

6.
Phys Rev Lett ; 113(5): 055302, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126925

RESUMO

We create atom-molecule dark states in a degenerate Fermi gas of ^{6}Li in both weakly and strongly interacting regimes using two-photon Raman scattering to couple fermion pairs to bound molecular states in the ground singlet and triplet potential. Near the unitarity point in the BEC-BCS crossover regime, the atom number revival height associated with the dark state abruptly and unexpectedly decreases and remains low for magnetic fields below the Feshbach resonance center at 832.2 G. With a weakly interacting Fermi gas at 0 G, we perform precision dark-state spectroscopy of the least-bound vibrational levels of the lowest singlet and triplet potentials. From these spectra, we obtain binding energies of the v^{''}=9, N^{''}=0 level of the a(1^{3}Σ_{u}^{+}) potential and the v^{''}=38, N^{''}=0 level of the X(1^{1}Σ_{g}^{+}) potential with absolute uncertainty as low as 20 kHz. For the triplet potential, we resolve the molecular hyperfine structure.

7.
Phys Rev Lett ; 110(22): 223002, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767718

RESUMO

We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. We then show that ultracold molecules trapped in optical lattices can be used as a quantum simulator to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings can be tuned with external electric fields. The parameters of current experiments place them in the region where one of the transitions occurs. We also propose a scheme to measure the polaron dispersion using stimulated Raman spectroscopy.

8.
Opt Express ; 15(19): 12344-55, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19547603

RESUMO

The effect of front-facet reflectivity on the amplification performance of Broad Area Laser (BAL) diodes in a double-pass configurationis studied experimentally. A method to measure the front facet reflectivities of laser diodes is generalized to BALs. The method is based on fitting a model, with front facet reflectivity as a parameter, to the threshold current vs. external feedback of the diode. Reflectivities of three BAL diodes are measured, and their amplification abilities have been assessed. The tested diodes had amplification factors of 0, 1, and 10 and front facet reflectivities of 12.7 +/-1%, 4.6 +/-0.4%, and 1.2 +/-0.2% respectively. It is concluded that a front facet modal reflectivity of less than 4.6% is necessary for a BAL to function as an amplifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA