Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(14): eadj7540, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579004

RESUMO

Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Reprogramação Metabólica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Imagem Óptica , Linhagem Celular Tumoral
2.
Mol Cancer Res ; 21(10): 995-1009, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37343066

RESUMO

After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Microambiente Tumoral
3.
NPJ Breast Cancer ; 8(1): 111, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163365

RESUMO

Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. "Fast-recurrence" tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. "Slow-recurrence" tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.

4.
Metabolites ; 12(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35629873

RESUMO

Aggressive breast cancer has been shown to shift its metabolism towards increased lipid catabolism as the primary carbon source for oxidative phosphorylation. In this study, we present a technique to longitudinally monitor lipid metabolism and oxidative phosphorylation in pre-clinical tumor models to investigate the metabolic changes with mammary tissue development and characterize metabolic differences between primary murine breast cancer and normal mammary tissue. We used optical spectroscopy to measure the signal of two simultaneously injected exogenous fluorescent metabolic reporters: TMRE (oxidative phosphorylation surrogate) and Bodipy FL C16 (lipid catabolism surrogate). We leverage an inverse Monte Carlo algorithm to correct for aberrations resulting from tissue optical properties and to extract vascular endpoints relevant to oxidative metabolism, specifically oxygen saturation (SO2) and hemoglobin concentration ([Hb]). We extensively validated our optical method to demonstrate that our two fluorescent metabolic endpoints can be measured without chemical or optical crosstalk and that dual measurements of both fluorophores in vivo faithfully recapitulate the measurements of each fluorophore independently. We then applied our method to track the metabolism of growing 4T1 and 67NR breast tumors and aging mammary tissue, all highly metabolic tissue types. Our results show the changes in metabolism as a function of mammary age and tumor growth, and these changes can be best distinguished through the combination of endpoints measured with our system. Clustering analysis incorporating both Bodipy FL C16 and TMRE endpoints combined with either SO2 or [Hb] proved to be the most effective in minimizing intra-group variance and maximizing inter-group differences. Our platform can be extended to applications in which long-term metabolic flexibility is important to study, for example in tumor regression, recurrence following dormancy, and responses to cancer treatment.

5.
Redox Biol ; 49: 102218, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952463

RESUMO

Redox metabolism plays essential functions in the pathology of cancer and many other diseases. While several radiotracers for imaging redox metabolism have been developed, there are no reports of radiotracers for in vivo imaging of protein oxidation. Here we take the first step towards this goal and describe the synthesis and kinetic properties of a new positron emission tomography (PET) [18F]Fluoro-DCP radiotracer for in vivo imaging of protein sulfenylation. Time course biodistribution and PET/CT studies using xenograft animal models of Head and Neck Squamous Cell Cancer (HNSCC) demonstrate its capability to distinguish between tumors with radiation sensitive and resistant phenotypes consistent with previous reports of decreased protein sulfenylation in clinical specimens of radiation resistant HNSCC. We envision further development of this technology to aid research efforts towards improving diagnosis of patients with radiation resistant tumors.


Assuntos
Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Animais , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Distribuição Tecidual
6.
Cancers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466329

RESUMO

Targeting a tumor's metabolic dependencies is a clinically actionable therapeutic approach; however, identifying subtypes of tumors likely to respond remains difficult. The use of lipids as a nutrient source is of particular importance, especially in breast cancer. Imaging techniques offer the opportunity to quantify nutrient use in preclinical tumor models to guide development of new drugs that restrict uptake or utilization of these nutrients. We describe a fast and dynamic approach to image fatty acid uptake in vivo and demonstrate its relevance to study both tumor metabolic reprogramming directly, as well as the effectiveness of drugs targeting lipid metabolism. Specifically, we developed a quantitative optical approach to spatially and longitudinally map the kinetics of long-chain fatty acid uptake in in vivo murine models of breast cancer using a fluorescently labeled palmitate molecule, Bodipy FL c16. We chose intra-vital microscopy of mammary tumor windows to validate our approach in two orthotopic breast cancer models: a MYC-overexpressing, transgenic, triple-negative breast cancer (TNBC) model and a murine model of the 4T1 family. Following injection, Bodipy FL c16 fluorescence increased and reached its maximum after approximately 30 min, with the signal remaining stable during the 30-80 min post-injection period. We used the fluorescence at 60 min (Bodipy60), the mid-point in the plateau region, as a summary parameter to quantify Bodipy FL c16 fluorescence in subsequent experiments. Using our imaging platform, we observed a two- to four-fold decrease in fatty acid uptake in response to the downregulation of the MYC oncogene, consistent with findings from in vitro metabolic assays. In contrast, our imaging studies report an increase in fatty acid uptake with tumor aggressiveness (6NR, 4T07, and 4T1), and uptake was significantly decreased after treatment with a fatty acid transport inhibitor, perphenazine, in both normal mammary pads and in the most aggressive 4T1 tumor model. Our approach fills an important gap between in vitro assays providing rich metabolic information at static time points and imaging approaches visualizing metabolism in whole organs at a reduced resolution.

7.
Mol Cancer Res ; 17(7): 1545-1555, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30902832

RESUMO

With the large number of women diagnosed and treated for breast cancer each year, the importance of studying recurrence has become evident due to most deaths from breast cancer resulting from tumor recurrence following therapy. To mitigate this, cellular and molecular pathways used by residual disease prior to recurrence must be studied. An altered metabolism has long been considered a hallmark of cancer, and several recent studies have gone further to report metabolic dysfunction and alterations as key to understanding the underlying behavior of dormant and recurrent cancer cells. Our group has used two probes, 2-[N-(7-nitrobenz-2-oxa-1, 3-diaxol-4-yl) amino]-2-deoxyglucose (2-NBDG) and tetramethyl rhodamine ethyl ester (TMRE), to image glucose uptake and mitochondrial membrane potential, respectively, to report changes in metabolism between primary tumors, regression, residual disease, and after regrowth in genetically engineered mouse (GEM)-derived mammospheres. Imaging revealed unique metabolic phenotypes across the stages of tumor development. Although primary mammospheres overexpressing Her2 maintained increased glucose uptake ("Warburg effect"), after Her2 downregulation, during regression and residual disease, mammospheres appeared to switch to oxidative phosphorylation. Interestingly, in mammospheres where Her2 overexpression was turned back on to model recurrence, glucose uptake was lowest, indicating a potential change in substrate preference following the reactivation of Her2, reeliciting growth. Our findings highlight the importance of imaging metabolic adaptions to gain insight into the fundamental behaviors of residual and recurrent disease. IMPLICATIONS: This study demonstrates these functional fluorescent probes' ability to report metabolic adaptations during primary tumor growth, regression, residual disease, and regrowth in Her2 breast tumors.


Assuntos
Neoplasias da Mama/genética , Glucose/metabolismo , Recidiva Local de Neoplasia/genética , Receptor ErbB-2/genética , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacologia , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Glucose/genética , Humanos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Recidiva Local de Neoplasia/metabolismo , Compostos Organometálicos/farmacologia , Fenótipo
8.
J Biophotonics ; 12(4): e201800372, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30565420

RESUMO

Therapeutically exploiting vascular and metabolic endpoints becomes critical to translational cancer studies because altered vascularity and deregulated metabolism are two important cancer hallmarks. The metabolic and vascular phenotypes of three sibling breast tumor lines with different metastatic potential are investigated in vivo with a newly developed quantitative spectroscopy system. All tumor lines have different metabolic and vascular characteristics compared to normal tissues, and there are strong positive correlations between metabolic (glucose uptake and mitochondrial membrane potential) and vascular (oxygen saturations and hemoglobin concentrations) parameters for metastatic (4T1) tumors but not for micrometastatic (4T07) and nonmetastatic (67NR) tumors. A longitudinal study shows that both vascular and metabolic endpoints of 4T1 tumors increased up to a specific tumor size threshold beyond which these parameters decreased. The synchronous changes between metabolic and vascular parameters, along with the strong positive correlations between these endpoints suggest that 4T1 tumors rely on strong oxidative phosphorylation in addition to glycolysis. This study illustrates the great potential of our optical technique to provide valuable dynamic information about the interplay between the metabolic and vascular status of tumors, with important implications for translational cancer investigations.


Assuntos
Determinação de Ponto Final , Neoplasias Mamárias Experimentais/metabolismo , Neovascularização Patológica , Fenômenos Ópticos , Animais , Linhagem Celular Tumoral , Feminino , Glicólise , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Metástase Neoplásica , Fosforilação Oxidativa , Carga Tumoral
9.
ACS Biomater Sci Eng ; 4(4): 1251-1264, 2018 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30349873

RESUMO

The inherent antioxidant function of poly(propylene sulfide) (PPS) microspheres (MS) was dissected for different reactive oxygen species (ROS), and therapeutic benefits of PPS-MS were explored in models of diabetic peripheral arterial disease (PAD) and mechanically induced post-traumatic osteoarthritis (PTOA). PPS-MS (∼1 µm diameter) significantly scavenged hydrogen peroxide (H2O2), hypochlorite, and peroxynitrite but not superoxide in vitro in cell-free and cell-based assays. Elevated ROS levels (specifically H2O2) were confirmed in both a mouse model of diabetic PAD and in a mouse model of PTOA, with greater than 5- and 2-fold increases in H2O2, respectively. PPS-MS treatment functionally improved recovery from hind limb ischemia based on ∼15-25% increases in hemoglobin saturation and perfusion in the footpads as well as earlier remodeling of vessels in the proximal limb. In the PTOA model, PPS-MS reduced matrix metalloproteinase (MMP) activity by 30% and mitigated the resultant articular cartilage damage. These results suggest that local delivery of PPS-MS at sites of injury-induced inflammation improves the vascular response to ischemic injury in the setting of chronic hyperglycemia and reduces articular cartilage destruction following joint trauma. These results motivate further exploration of PPS as a stand-alone, locally sustained antioxidant therapy and as a material for microsphere-based, sustained local drug delivery to inflamed tissues at risk of ROS damage.

10.
Sci Rep ; 7(1): 8750, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821832

RESUMO

While surgery is at the foundation of cancer treatment, its access is limited in low-income countries. Here, we describe development of a low-cost alternative therapy based on intratumoral ethanol injection suitable for resource-limited settings. Although ethanol-based tumor ablation is successful in treating hepatocellular carcinomas, the necessity for multiple treatments, injection of large fluid volumes, and decreased efficacy in treatment of non-capsulated tumors limit its applicability. To address these limitations, we investigated an enhanced ethanol ablation strategy to retain ethanol within the tumor through the addition of ethyl cellulose. This increases the viscosity of injected ethanol and forms an ethanol-based gel-phase upon exposure to the aqueous tumor environment. This technique was first optimized to maximize distribution volume, using tissue-simulating phantoms. Then, chemically-induced epithelial tumors in the hamster cheek pouch were treated. As controls, pure ethanol injections of either four times or one-fourth the tumor volume induced complete regression of 33% and 0% of tumors, respectively. In contrast, ethyl cellulose-ethanol injections of one-fourth the tumor volume induced complete regression in 100% of tumors. These results contribute to proof-of-concept for enhanced ethanol ablation as a novel and effective alternative to surgery for tumor treatment, with relevance to resource-limited settings.


Assuntos
Ablação por Cateter/métodos , Etanol/administração & dosagem , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Celulose/análogos & derivados , Celulose/química , Cricetinae , Modelos Animais de Doenças , Etanol/química , Feminino , Humanos , Injeções Intralesionais , Neoplasias/diagnóstico , Imagens de Fantasmas , Resultado do Tratamento , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
AMB Express ; 6(1): 20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26970766

RESUMO

Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with tooth decay. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50 % inhibitory concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect of the counter ion on antimicrobial activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...