Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6902, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903791

RESUMO

Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.


Assuntos
Desenvolvimento Embrionário , Transcriptoma , Animais , Humanos , Desenvolvimento Embrionário/genética , Zigoto/metabolismo , Perfilação da Expressão Gênica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análise de Sequência de RNA , Processamento Alternativo/genética , Blastocisto/metabolismo
2.
Nat Commun ; 12(1): 4854, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381049

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Transcriptoma/imunologia , Adolescente , Antígeno CD56/metabolismo , Antígenos CD57/metabolismo , Linfócitos T CD8-Positivos/metabolismo , COVID-19/genética , Criança , Pré-Escolar , Regulação para Baixo , Feminino , Humanos , Lactente , Recém-Nascido , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/imunologia , SARS-CoV-2/patogenicidade , Síndrome de Resposta Inflamatória Sistêmica/genética , Adulto Jovem
3.
medRxiv ; 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909006

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and multiple organ involvement in individuals under 21 years following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To identify genes, pathways and cell types driving MIS-C, we sequenced the blood transcriptomes of MIS-C cases, pediatric cases of coronavirus disease 2019, and healthy controls. We define a MIS-C transcriptional signature partially shared with the transcriptional response to SARS-CoV-2 infection and with the signature of Kawasaki disease, a clinically similar condition. By projecting the MIS-C signature onto a co-expression network, we identified disease gene modules and found genes downregulated in MIS-C clustered in a module enriched for the transcriptional signatures of exhausted CD8 + T-cells and CD56 dim CD57 + NK cells. Bayesian network analyses revealed nine key regulators of this module, including TBX21 , a central coordinator of exhausted CD8 + T-cell differentiation. Together, these findings suggest dysregulated cytotoxic lymphocyte response to SARS-Cov-2 infection in MIS-C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...