Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(15)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37566074

RESUMO

The ability to recapitulate muscle differentiation in vitro enables the exploration of mechanisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes controlling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However, myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and transcriptomic levels. While most LADs are shared between the two cell types, each also displays unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell type-specific features of radial and functional genome organization. Our results favor a view of myo-converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of muscle cell differentiation in normal and pathological contexts, but also highlight current limitations in using fibroblasts as a source of myogenic cells.


Assuntos
Fibroblastos , Fibras Musculares Esqueléticas , Humanos , Adolescente , Diferenciação Celular/genética , Mioblastos/metabolismo , Genômica
2.
Genes (Basel) ; 14(2)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36833261

RESUMO

The nuclear lamina provides a repressive chromatin environment at the nuclear periphery. However, whereas most genes in lamina-associated domains (LADs) are inactive, over ten percent reside in local euchromatic contexts and are expressed. How these genes are regulated and whether they are able to interact with regulatory elements remain unclear. Here, we integrate publicly available enhancer-capture Hi-C data with our own chromatin state and transcriptomic datasets to show that inferred enhancers of active genes in LADs are able to form connections with other enhancers within LADs and outside LADs. Fluorescence in situ hybridization analyses show proximity changes between differentially expressed genes in LADs and distant enhancers upon the induction of adipogenic differentiation. We also provide evidence of involvement of lamin A/C, but not lamin B1, in repressing genes at the border of an in-LAD active region within a topological domain. Our data favor a model where the spatial topology of chromatin at the nuclear lamina is compatible with gene expression in this dynamic nuclear compartment.


Assuntos
Núcleo Celular , Cromatina , Hibridização in Situ Fluorescente , Cromatina/metabolismo , Núcleo Celular/genética , Lâmina Nuclear/genética , Lâmina Nuclear/metabolismo , Epistasia Genética
3.
Front Cell Dev Biol ; 10: 913458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693945

RESUMO

Associations of chromatin with the nuclear lamina, at the nuclear periphery, help shape the genome in 3 dimensions. The genomic landscape of lamina-associated domains (LADs) is well characterized, but much remains unknown on the physical and mechanistic properties of chromatin conformation at the nuclear lamina. Computational models of chromatin folding at, and interactions with, a surface representing the nuclear lamina are emerging in attempts to characterize these properties and predict chromatin behavior at the lamina in health and disease. Here, we highlight the heterogeneous nature of the nuclear lamina and LADs, outline the main 3-dimensional chromatin structural modeling methods, review applications of modeling chromatin-lamina interactions and discuss biological insights inferred from these models in normal and disease states. Lastly, we address perspectives on future developments in modeling chromatin interactions with the nuclear lamina.

4.
Cells ; 11(11)2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35681541

RESUMO

Induction of cellular senescence or cancer is associated with a reshaping of the nuclear envelope and a broad reorganization of heterochromatin. At the periphery of mammalian nuclei, heterochromatin is stabilized at the nuclear lamina via lamina-associated domains (LADs). Alterations in the composition of the nuclear lamina during senescence lead to a loss of peripheral heterochromatin, repositioning of LADs, and changes in epigenetic states of LADs. Cancer initiation and progression are also accompanied by a massive reprogramming of the epigenome, particularly in domains coinciding with LADs. Here, we review recent knowledge on alterations in chromatin organization and in the epigenome that affect LADs and related genomic domains in senescence and cancer.


Assuntos
Heterocromatina , Neoplasias , Animais , Núcleo Celular , Mamíferos/genética , Neoplasias/genética , Membrana Nuclear , Lâmina Nuclear
5.
Genome Biol ; 23(1): 91, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410387

RESUMO

BACKGROUND: Interactions of chromatin with the nuclear lamina via lamina-associated domains (LADs) confer structural stability to the genome. The dynamics of positioning of LADs during differentiation, and how LADs impinge on developmental gene expression, remains, however, elusive. RESULTS: We examined changes in the association of lamin B1 with the genome in the first 72 h of differentiation of adipose stem cells into adipocytes. We demonstrate a repositioning of entire stand-alone LADs and of LAD edges as a prominent nuclear structural feature of early adipogenesis. Whereas adipogenic genes are released from LADs, LADs sequester downregulated or repressed genes irrelevant for the adipose lineage. However, LAD repositioning only partly concurs with gene expression changes. Differentially expressed genes in LADs, including LADs conserved throughout differentiation, reside in local euchromatic and lamin-depleted sub-domains. In these sub-domains, pre-differentiation histone modification profiles correlate with the LAD versus inter-LAD outcome of these genes during adipogenic commitment. Lastly, we link differentially expressed genes in LADs to short-range enhancers which overall co-partition with these genes in LADs versus inter-LADs during differentiation. CONCLUSIONS: We conclude that LADs are predictable structural features of adipose nuclear architecture that restrain non-adipogenic genes in a repressive environment.


Assuntos
Adipogenia , Eucromatina , Cromatina/metabolismo , Eucromatina/metabolismo , Lâmina Nuclear/genética
6.
Front Cell Dev Biol ; 6: 73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057899

RESUMO

At the nuclear periphery, the genome is anchored to A- and B-type nuclear lamins in the form of heterochromatic lamina-associated domains. A-type lamins also associate with chromatin in the nuclear interior, away from the peripheral nuclear lamina. This nucleoplasmic lamin A environment tends to be euchromatic, suggesting distinct roles of lamin A in the regulation of gene expression in peripheral and more central regions of the nucleus. The hot-spot lamin A R482W mutation causing familial partial lipodystrophy of Dunnigan-type (FPLD2), affects lamin A association with chromatin at the nuclear periphery and in the nuclear interior, and is associated with 3-dimensional (3D) rearrangements of chromatin. Here, we highlight features of nuclear lamin association with the genome at the nuclear periphery and in the nuclear interior. We address recent data showing a rewiring of such interactions in cells from FPLD2 patients, and in adipose progenitor and induced pluripotent stem cell models of FPLD2. We discuss associated epigenetic and genome conformation changes elicited by the lamin A R482W mutation at the gene level. The findings argue that the mutation adversely impacts both global and local genome architecture throughout the nucleus space. The results, together with emerging new computational modeling tools, mark the start of a new era in our understanding of the 3D genomics of laminopathies.

7.
J Cell Mol Med ; 22(5): 2846-2855, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29516674

RESUMO

Cytokinesis failure leads to the emergence of tetraploid cells and multiple centrosomes. Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in adults and is characterized by clonal B cell expansion. Here, we show that a significant number of peripheral blood CLL cells are arrested in cytokinesis and that this event occurred after nuclear envelope reformation and before cytoplasmic abscission. mRNA expression data showed that several genes known to be crucial for cell cycle regulation, checkpoint and centromere function, such as ING4, ING5, CDKN1A and CDK4, were significantly dysregulated in CLL samples. Our results demonstrate that CLL cells exhibit difficulties in completing mitosis, which is different from but may, at least in part, explain the previously reported accumulation of CLL cells in G0/1.


Assuntos
Pontos de Checagem do Ciclo Celular , Centrossomo/metabolismo , Citocinese , Leucemia Linfocítica Crônica de Células B/patologia , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Contagem de Células , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...