Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38914842

RESUMO

Cetacean-cultured cells are a promising tool for life science research. Most cells used in cetacean research are derived from the skin and kidneys. However, cell cultures from various organs are required for more flexible cetacean research. Primary cultures were prepared from kidney, intestinal, and lung tissues using a simple tissue fragment culture method from a striped dolphin (Stenella coeruleoalba). Kidney and intestinal cells were mostly epithelial-like, whereas lung cells were mostly fibroblast-like. The simple tissue fragment culture method presented in this study will be useful for expanding cetacean cell resources. Culturing allogeneic cell models is expected to introduce a flexible in vitro approach to cetacean research.

2.
Front Pharmacol ; 13: 851374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188610

RESUMO

Mucin 5AC (MUC5AC) is excessively secreted in the respiratory tract of patients with asthma. Suppressing this secretion is important for improving the air passages, which facilitates easy breathing. We have previously reported that the addition of type IV collagen, a typical extracellular matrix (ECM) protein, to the culture medium for human cell lines and primary cells reduced MUC5AC secretion. In this report, we further investigated the effect of type IV collagen on MUC5AC secretion in vivo. We employed ovalbumin (OVA)-sensitized mice to model of asthma and exposed them to type IV collagen to verify the reducing effect of MUC5AC in vivo. The amount of MUC5AC in bronchoalveolar lavage fluid was examined after nebulization of type IV collagen. Hypersecretion of MUC5AC of the OVA-sensitized mice was suppressed by type IV collagen exposure in a time- and dose-dependent manner. Furthermore, type IV collagen exposure to OVA-sensitized mice decreased integrin α2 and ß1 expression in the lungs and increased the levels of Akt and extracellular signal-regulated kinase (ERK) phosphorylation in the trachea. These results suggest that type IV collagen suppresses MUC5AC hypersecretion via modulating integrin expression and Akt/ERK phosphorylation in the respiratory tract of the OVA-sensitized mice.

3.
Ann Anat ; 233: 151594, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32911068

RESUMO

BACKGROUND: The liver architecture of vertebrates can be classified into two types, the portal triad type (having periportal bile ducts) and the non-portal triad type (having non-periportal bile ducts). The former is detectable from the hagfish, which is the most ancestral vertebrate, to tetrapod livers whereas many actinopterygian livers have the latter. The aim of the present study is to reveal the distribution of smooth muscle tissue in livers of various vertebrates with attention to their architectures. METHODS: Smooth muscle was immunohistochemically compared in hepatic blood vessels and bile ducts of various vertebrates, using an anti-alpha-smooth muscle actin (ASMA) antibody. RESULTS: Smooth muscle was noted in the gallbladder and hepatic artery in all vertebrates, including the hagfish. Bile ducts having ASMA-positive smooth muscles were absent in the hagfish, but detected in the Chondrichthyes and conserved in actinopterygians with or without portal triads during the evolution of vertebrates. In tetrapods having portal triads, reptiles had a tendency to have strongly ASMA-positive biliary smooth muscle tissues whereas other tetrapods had bile ducts with poor smooth muscle tissues. Although the hagfish livers never had ASMA-positive smooth muscle tissue in the walls of portal and central veins, it was observed in discontinuous distributions or not observed in portal veins and central veins of chondrichthyans and actinopterygians. By contrast, in most tetrapods, ASMA-positive smooth muscle tissue was detectable in portal veins, which supported the adjacent endothelial cells as a circular layer. Central veins did not consistently have smooth muscle tissue in these groups. DISCUSSION AND CONCLUSION: The hagfish liver may retain more ancestral characteristics than other vertebrates in terms of smooth muscle distribution in the vascular and biliary systems. Actinopterygians might have a different mechanism of bile transport from tetrapods from their smooth muscle distribution in intrahepatic bile ducts. The circular smooth muscle distribution in portal veins might be a characteristic acquired by tetrapods.


Assuntos
Células Endoteliais , Fígado , Animais , Ductos Biliares Intra-Hepáticos , Músculo Liso , Vertebrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA