Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4386, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388662

RESUMO

Predicting the therapeutic response to biologics before administration is a key clinical challenge in ulcerative colitis (UC). We previously reported a model for predicting the efficacy of vedolizumab (VDZ) for UC using a machine-learning approach. Ustekinumab (UST) is now available for treating UC, but no model for predicting its efficacy has been developed. When applied to patients with UC treated with UST, our VDZ prediction model showed positive predictive value (PPV) of 56.3% and negative predictive value (NPV) of 62.5%. Given this limited predictive ability, we aimed to develop a UST-specific prediction model with clinical features at baseline including background factors, clinical and endoscopic activity, and blood test results, as we did for the VDZ prediction model. The top 10 features (Alb, monocytes, height, MCV, TP, Lichtiger index, white blood cell count, MCHC, partial Mayo score, and CRP) associated with steroid-free clinical remission at 6 months after starting UST were selected using random forest. The predictive ability of a model using these predictors was evaluated by fivefold cross-validation. Validation of the prediction model with an external cohort showed PPV of 68.8% and NPV of 71.4%. Our study suggested the importance of establishing a drug-specific prediction model.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Ustekinumab/uso terapêutico , Estudos Retrospectivos , Fatores Biológicos/uso terapêutico , Aprendizado de Máquina , Resultado do Tratamento
2.
Sci Rep ; 11(1): 16440, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385588

RESUMO

Predicting the response of patients with ulcerative colitis (UC) to a biologic such as vedolizumab (VDZ) before administration is an unmet need for optimizing individual patient treatment. We hypothesized that the machine-learning approach with daily clinical information can be a new, promising strategy for developing a drug-efficacy prediction tool. Random forest with grid search and cross-validation was employed in Cohort 1 to determine the contribution of clinical features at baseline (week 0) to steroid-free clinical remission (SFCR) with VDZ at week 22. Among 49 clinical features including sex, age, height, body weight, BMI, disease duration/phenotype, treatment history, clinical activity, endoscopic activity, and blood test items, the top eight features (partial Mayo score, MCH, BMI, BUN, concomitant use of AZA, lymphocyte fraction, height, and CRP) were selected for logistic regression to develop a prediction model for SFCR at week 22. In the validation using the external Cohort 2, the positive and negative predictive values of the prediction model were 54.5% and 92.3%, respectively. The prediction tool appeared useful for identifying patients with UC who would not achieve SFCR at week 22 during VDZ therapy. This study provides a proof-of-concept that machine learning using real-world data could permit personalized treatment for UC.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Fármacos Gastrointestinais/uso terapêutico , Aprendizado de Máquina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , Indução de Remissão , Estudos Retrospectivos , Adulto Jovem
3.
Plants (Basel) ; 10(2)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504088

RESUMO

Leaf iron (Fe) contents in Fe-deficiency-tolerant plants are not necessarily higher than that in Fe-deficiency-susceptible ones, suggesting an unknown mechanism involved in saving and allowing the efficient use of minimal Fe. To quantitatively evaluate the difference in Fe economy for photosynthesis, we compared the ratio of CO2 assimilation rate to Fe content in newly developed leaves as a novel index of photosynthetic iron-use efficiency (PIUE) among 23 different barley (Hordeum vulgare L.) varieties. Notably, varieties originating from areas with alkaline soil increased PIUE in response to Fe-deficiency, suggesting that PIUE enhancement is a crucial and genetically inherent trait for acclimation to Fe-deficient environments. Multivariate analyses revealed that the ability to increase PIUE was correlated with photochemical quenching (qP), which is a coefficient of light energy used in photosynthesis. Nevertheless, the maximal quantum yield of photosystem II (PSII) photochemistry, non-photochemical quenching, and quantum yield of carbon assimilation showed a relatively low correlation with PIUE. This result suggests that the ability of Fe-deficiency-tolerant varieties of barley to increase PIUE is related to optimizing the electron flow downstream of PSII, including cytochrome b6f and photosystem I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...