Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Sci ; 114(5): 2078-2086, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36762786

RESUMO

Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.


Assuntos
Neoplasias , Proteínas Ribossômicas , Humanos , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Neoplasias/genética , Neoplasias/metabolismo
2.
Genes Cells ; 27(11): 633-642, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054307

RESUMO

Ovarian cancer (OC) is the fifth most common cancer of female cancer death and leading cause of lethal gynecological cancers. High-grade serous ovarian carcinoma (HGSOC) is an aggressive malignancy that is rapidly fatal. Many cases of OC show amplification of the 8q24 chromosomal region, which contains the well-known oncogene MYC. Although MYC amplification is more frequently observed in OCs than in other tumor types, due to the large size of the 8q24 amplicon, the functions of the vast majority of the genes it contains are still unknown. The TIGD5 gene is located at 8q24.3 and encodes a nuclear protein with a DNA-binding motif, but its precise role is obscure. We show here that TIGD5 often co-amplifies with MYC in OCs, and that OC patients with high TIGD5 mRNA expression have a poor prognosis. However, we also found that TIGD5 overexpression in ovarian cancer cell lines unexpectedly suppressed their growth, adhesion, and invasion in vitro, and also reduced tumor growth in xenografted nude mice in vivo. Thus, our work suggests that TIGD5 may in fact operate as a tumor suppressor in OCs rather than as an oncogene.


Assuntos
Proteínas Nucleares , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
3.
Genes Cells ; 27(10): 602-612, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36054428

RESUMO

Bladder cancer (BlC) is the fourth most common cancer in males worldwide, but few systemic chemotherapy options for its effective treatment exist. The development of new molecularly-targeted agents against BlC is therefore an urgent issue. The Hippo signaling pathway, with its upstream LATS kinases and downstream transcriptional co-activators YAP1 and TAZ, plays a pivotal role in diverse cell functions, including cell proliferation. Recent studies have shown that overexpression of YAP1 occurs in advanced BlCs and is associated with poor patient prognosis. Accessing data from our previous screening of a chemical library of compounds targeting the Hippo pathway, we identified DMPCA (N-(3,4-dimethoxyphenethyl)-6-methyl-2,3,4,9-tetrahydro-1H-carbazol-1-amine) as an agent able to induce the phosphorylation of LATS1 and YAP1/TAZ in BlC cells, thereby suppressing their viability both in vitro and in mouse xenografts. Our data indicate that DMPCA has a potent anti-tumor effect, and raise the possibility that this agent may represent a new and effective therapeutic option for BlC.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminas , Carbazóis , Proteínas Serina-Treonina Quinases , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Proteínas de Sinalização YAP
4.
Proc Natl Acad Sci U S A ; 119(29): e2123134119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858357

RESUMO

Breast cancer is the most frequent malignancy in women worldwide. Basal-like breast cancer (BLBC) is the most aggressive form of this disease, and patients have a poor prognosis. Here, we present data suggesting that the Hippo-transcriptional coactivator with PDZ-binding motif (TAZ) pathway is a key driver of BLBC onset and progression. Deletion of Mob1a/b in mouse mammary luminal epithelium induced rapid and highly reproducible mammary tumorigenesis that was dependent on TAZ but not yes-associated protein 1 (YAP1). In situ early-stage BLBC-like malignancies developed in mutant animals by 2 wk of age, and invasive BLBC appeared by 4 wk. In a human estrogen receptor+ luminal breast cancer cell line, TAZ hyperactivation skewed the features of these luminal cells to the basal phenotype, consistent with the aberrant TAZ activation frequently observed in human precancerous BLBC lesions. TP53 mutation is rare in human precancerous BLBC but frequent in invasive BLBC. Addition of Trp53 deficiency to our Mob1a/b-deficient mouse model enhanced tumor grade and accelerated cancer progression. Our work justifies targeting the Hippo-TAZ pathway as a therapy for human BLBC, and our mouse model represents a powerful tool for evaluating candidate agents.


Assuntos
Via de Sinalização Hippo , Neoplasias Mamárias Experimentais , Lesões Pré-Cancerosas , Neoplasias de Mama Triplo Negativas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Deleção de Genes , Via de Sinalização Hippo/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Experimentais/genética , Camundongos , Lesões Pré-Cancerosas/genética , Receptores de Estrogênio/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Proteínas de Sinalização YAP/genética
5.
Cancer Sci ; 112(10): 4303-4316, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289205

RESUMO

Yes-associated protein 1 (YAP1) and its paralogue PDZ-binding motif (TAZ) play pivotal roles in cell proliferation, migration, and invasion, and abnormal activation of these TEAD transcriptional coactivators is found in diverse cancers in humans and mice. Targeting YAP1/TAZ signaling is thus a promising therapeutic avenue but, to date, few selective YAP1/TAZ inhibitors have been effective against cancer cells either in vitro or in vivo. We screened chemical libraries for potent YAP1/TAZ inhibitors using a highly sensitive luciferase reporter system to monitor YAP1/TAZ-TEAD transcriptional activity in cells. Among 29 049 low-molecular-weight compounds screened, we obtained nine hits, and the four of these that were the most effective shared a core structure with the natural product alantolactone (ALT). We also tested 16 other structural derivatives of ALT and found that natural ALT was the most efficient at increasing ROS-induced LATS kinase activities and thus YAP1/TAZ phosphorylation. Phosphorylated YAP1/TAZ proteins were subject to nuclear exclusion and proteosomic degradation such that the growth of ALT-treated tumor cells was inhibited both in vitro and in vivo. Our data show for the first time that ALT can be used to target the ROS-YAP pathway driving tumor cell growth and so could be a potent anticancer drug.


Assuntos
Aciltransferases/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Lactonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Eudesmano/farmacologia , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Auranofina/farmacologia , Movimento Celular , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular , Proteínas de Ligação a DNA/metabolismo , Descoberta de Drogas , Feminino , Inula/química , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Fatores de Transcrição de Domínio TEA , Neoplasias da Língua/induzido quimicamente , Neoplasias da Língua/prevenção & controle , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteínas de Sinalização YAP
6.
Genes Cells ; 26(9): 714-726, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34142411

RESUMO

There are currently no treatments for salivary gland diseases, making it vital to understand signaling mechanisms operating in acinar and ductal cells so as to develop regenerative therapies. To date, little work has focused on elucidating the signaling cascades controlling the differentiation of these cell types in adult mammals. To analyze the function of the Hippo-TAZ/YAP1 pathway in adult mouse salivary glands, we generated adMOB1DKO mice in which both MOB1A and MOB1B were TAM-inducibly deleted when the animals were adults. Three weeks after TAM treatment, adMOB1DKO mice exhibited smaller submandibular glands (SMGs) than controls with a decreased number of acinar cells and an increased number of immature dysplastic ductal cells. The mutants suffered from reduced saliva production accompanied by mild inflammatory cell infiltration and fibrosis in SMGs, similar to the Sjogren's syndrome. MOB1-deficient acinar cells showed normal proliferation and apoptosis but decreased differentiation, leading to an increase in acinar/ductal bilineage progenitor cells. These changes were TAZ-dependent but YAP1-independent. Biochemically, MOB1-deficient salivary epithelial cells showed activation of the TAZ/YAP1 and ß-catenin in ductal cells, but reduced SOX2 and SOX10 expression in acinar cells. Thus, Hippo-TAZ signaling is critical for proper ductal and acinar cell differentiation and function in adult mice.


Assuntos
Células Acinares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Proliferação de Células , Glândulas Salivares/metabolismo , Células Acinares/citologia , Células Acinares/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Glândulas Salivares/citologia , beta Catenina/genética , beta Catenina/metabolismo
7.
Cancer Sci ; 112(1): 51-60, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33159406

RESUMO

The Hippo-YAP pathway regulates organ size, tissue homeostasis, and tumorigenesis in mammals. In response to cell density, external mechanical pressure, and/or other stimuli, the Hippo core complex controls the translocation of YAP1/TAZ proteins to the nucleus and thereby regulates cell growth. Abnormal upregulation or nuclear localization of YAP1/TAZ occurs in many human malignancies and promotes their formation, progression, and metastasis. A key example is squamous cell carcinoma (SCC) genesis. Many risk factors and crucial signals associated with SCC development in various tissues accelerate YAP1/TAZ accumulation, and mice possessing constitutively activated YAP1/TAZ show immediate carcinoma in situ (CIS) formation in these tissues. Because CIS onset is so rapid in these mutants, we propose that many SCCs initiate and progress when YAP1 activity is sustained and exceeds a certain oncogenic threshold. In this review, we summarize the latest findings on the roles of YAP1/TAZ in several types of SCCs. We also discuss whether targeting aberrant YAP1/TAZ activation might be a promising strategy for SCC treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinoma de Células Escamosas/patologia , Proliferação de Células/fisiologia , Humanos
8.
Microorganisms ; 8(7)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679800

RESUMO

Phosphatidylinositol phosphates (PIPs) are involved in many cellular events as important secondary messengers. In Entamoeba histolytica, a human intestinal protozoan parasite, virulence-associated mechanisms such as cell motility, vesicular traffic, trogo- and phagocytosis are regulated by PIPs. It has been well established that PI3P, PI4P, and PI(3,4,5)P3 play specific roles during amoebic trogo- and phagocytosis. In the present study, we demonstrated the nuclear localization of PI4P in E. histolytica trophozoites in steady state with immunofluorescence imaging and immunoelectron microscopy, using anti-PI4P antibodies and PI4P biosensors [substrate of the Icm/ Dot type IV secretion system (SidM)]. We further showed that the nuclear PI4P decreased after a co-culture with human erythrocytes or Chinese hamster ovary (CHO) cells. However, concomitant changes in the localization and the amount of PI(4,5)P2, which is the expected major metabolized (phosphorylated) product of PI4P, were not observed. This phenomenon was specifically caused by whole or ghost erythrocytes and CHO cells, but not artificial beads. The amount of PIP2 and PIP, biochemically estimated by [32P]-phosphate metabolic labeling and thin layer chromatography, was decreased upon erythrocyte adherence. Altogether, our data indicate for the first time in eukaryotes that erythrocyte attachment leads to the metabolism of nuclear PIPs, and metabolites other than PI(4,5)P2 may be involved in the regulation of downstream cellular events such as cytoskeleton rearrangement or transcriptional regulation.

9.
Cancer Sci ; 111(10): 3576-3587, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32716083

RESUMO

Cervical cancer (CC) is usually initiated by infection with high-risk types of human papillomavirus (HPV). The HPV E6 and E7 proteins target p53 and RB, respectively, but other cellular targets likely exist. We generated uterus-specific MOB1A/B double KO (uMob1DKO) mice, which immediately developed cervical squamous cell carcinoma in situ. Mutant cervical epithelial cells showed YAP1-dependent hyperproliferation, altered self-renewal, impaired contact inhibition, and chromosomal instability. p53 activation was increased in uMob1DKO cells, and additional p53 loss in uMob1DKO mice accelerated tumor invasion. In human CC, strong YAP1 activation was observed from the precancerous stage. Human cells overexpressing HPV16 E6/E7 showed inactivation of not only p53 and RB but also PTPN14, boosting YAP1 activation. Estrogen, cigarette smoke condensate, and PI3K hyperactivation all increased YAP1 activity in human cervical epithelial cells, and PTPN14 depletion along with PI3K activation or estrogen treatment further enhanced YAP1. Thus, immediate CC onset may initiate when YAP1 activity exceeds an oncogenic threshold, making Hippo-YAP1 signaling a major CC driver.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cárie Radicular/metabolismo , Animais , Carcinoma/virologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Estrogênios/metabolismo , Humanos , Camundongos , Camundongos Knockout , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/metabolismo , Papillomaviridae/patogenicidade , Proteínas E7 de Papillomavirus/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Repressoras/metabolismo , Cárie Radicular/virologia , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
10.
Sci Adv ; 6(12): eaay3324, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32206709

RESUMO

Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common group of cancers in the world, and patients have a poor prognosis. Here, we present data indicating that YAP1 may be a strong driver of the onset and progression of oral SCC (OSCC), a major subtype of HNSCC. Mice with tongue-specific deletion of Mob1a/b and thus endogenous YAP1 hyperactivation underwent surprisingly rapid and highly reproducible tumorigenesis, developing tongue carcinoma in situ within 2 weeks and invasive SCC within 4 weeks. In humans, precancerous tongue dysplasia displays YAP1 activation correlating with reduced patient survival. Combinations of molecules mutated in OSCC may increase and sustain YAP1 activation to the point of oncogenicity. Strikingly, siRNA or pharmacological inhibition of YAP1 blocks murine OSCC onset in vitro and in vivo. Our work justifies targeting YAP1 as therapy for OSCC and perhaps HNSCC, and our mouse model represents a powerful tool for evaluating these agents.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/etiologia , Neoplasias Bucais/etiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Camundongos , Camundongos Knockout , Neoplasias Bucais/metabolismo , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Proteínas Oncogênicas , Prognóstico , Proteínas de Sinalização YAP
11.
Artigo em Inglês | MEDLINE | ID: mdl-31245297

RESUMO

Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.


Assuntos
Entamoeba histolytica/enzimologia , Entamoeba histolytica/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/classificação , Fosfotransferases (Aceptor do Grupo Álcool)/classificação , Isoformas de Proteínas , Transdução de Sinais
12.
Genes Cells ; 24(7): 485-495, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31125466

RESUMO

Mammalian STE20-like protein kinase 1/2 (MST1/2) and nuclear Dbf2-related kinase 1/2 (NDR1/2) are core components of Hippo signaling that are also known to be important regulators of lymphocyte trafficking. However, little is understood about the roles of other Hippo pathway molecules in these cells. Here, we present the first analysis of the function of Mps one binder kinase activator-1 (MOB1) in T lymphocytes in vivo. T-cell-specific double knockout (DKO) of MOB1A/B in mice [tMob1 DKO mice] reduces the number of naïve T cells in both the circulation and secondary lymphoid organs, but leads to an accumulation of CD4+ CD8- and CD4- CD8+ single-positive (SP) cells in the thymus. In vitro, naïve MOB1A/B-deficient T cells show increased apoptosis and display impaired trafficking capacity in response to the chemokine CCL19. These defects are linked to suppression of the activation of MST and NDR kinases, but are independent of the downstream transcriptional co-activator Yes-associated protein 1 (YAP1). Thus, MOB1 proteins play an important role in thymic egress and T-cell survival that is mediated by a pathway other than conventional Hippo-YAP1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação da Expressão Gênica , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Proteínas Quinases/fisiologia , Linfócitos T/imunologia , Timócitos/imunologia , Animais , Apoptose , Proteínas de Ciclo Celular , Células Cultivadas , Quimiotaxia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/metabolismo , Linfócitos T/patologia , Timócitos/metabolismo , Timócitos/patologia , Proteínas de Sinalização YAP
13.
FASEB J ; 33(4): 5548-5560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30640535

RESUMO

Cell competition is involved in mammalian embryogenesis and tumor elimination and progression. It was previously shown that, whereas NIH3T3 mouse fibroblasts expressing high levels of the yes-associated protein 1(YAP1) target TEA domain family (TEAD) transcription factors become "winners" in cell competitions, Madin-Darby canine kidney cells expressing activated YAP1 become "losers" and are eliminated from culture monolayers. Thus, YAP1's role in cell competitions is clearly context dependent. Here, we show that keratinocytes overexpressing a constitutively activated YAP1 mutant lose in in vitro competitions with control cells conducted in standard tissue culture dishes and undergo apical extrusion. Similarly, cells in which endogenous YAP1 is activated by NF2 knockdown become losers. The YAP1-overexpressing cells exhibit a decrease in cell-matrix adhesion because of defective expression of adhesion molecules such as fibronectin-1. Cell adhesion-mediated proliferation is also impaired. However, because of intrinsic factors, YAP1-expressing cells proliferate faster than control cells when cocultured in dishes impeding cell adhesion. In vivo, Mob1a/b-deficient (YAP1-activated) epidermis, which shows decreased expression of type XVII collagen, cannot be engrafted successfully onto donor mice. YAP1-activated skin grafts shrink away from surrounding control skin, and the epidermis peels off the basement membrane. Our data show that YAP1 activation controls cell competition in part by decreasing cell adhesion.-Nishio, M., Miyachi, Y., Otani, J., Tane, S., Omori, H., Ueda, F., Togashi, H., Sasaki, T., Mak, T. W., Nakao, K., Fujita, Y., Nishina, H., Maehama, T., Suzuki, A. Hippo pathway controls cell adhesion and context-dependent cell competition to influence skin engraftment efficiency.


Assuntos
Adesão Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Pele/metabolismo , Animais , Proliferação de Células/fisiologia , Cães , Desenvolvimento Embrionário/fisiologia , Fibronectinas/metabolismo , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Fatores de Transcrição/metabolismo
14.
Development ; 145(6)2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29511023

RESUMO

Hippo signaling is modulated in response to cell density, external mechanical forces, and rigidity of the extracellular matrix (ECM). The Mps one binder kinase activator (MOB) adaptor proteins are core components of Hippo signaling and influence Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which are potent transcriptional regulators. YAP1/TAZ are key contributors to cartilage and bone development but the molecular mechanisms by which the Hippo pathway controls chondrogenesis are largely unknown. Cartilage is rich in ECM and also subject to strong external forces - two upstream factors regulating Hippo signaling. Chondrogenesis and endochondral ossification are tightly controlled by growth factors, morphogens, hormones, and transcriptional factors that engage in crosstalk with Hippo-YAP1/TAZ signaling. Here, we generated tamoxifen-inducible, chondrocyte-specific Mob1a/b-deficient mice and show that hyperactivation of endogenous YAP1/TAZ impairs chondrocyte proliferation and differentiation/maturation, leading to chondrodysplasia. These defects were linked to suppression of SOX9, a master regulator of chondrogenesis, the expression of which is mediated by TEAD transcription factors. Our data indicate that a MOB1-dependent YAP1/TAZ-TEAD complex functions as a transcriptional repressor of SOX9 and thereby negatively regulates chondrogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osteocondrodisplasias/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição SOX9/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Proliferação de Células/genética , Condrócitos/metabolismo , Condrogênese/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Osteocondrodisplasias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Transativadores , Proteínas de Sinalização YAP
15.
Genes Cells ; 22(1): 6-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28078823

RESUMO

The Hippo signaling pathway is a vital suppressor of tumorigenesis that is often inactivated in human cancers. In normal cells, the Hippo pathway is triggered by external forces such as cell crowding, or changes to the extracellular matrix or cell polarity. Once activated, Hippo signaling down-regulates transcription supported by the paralogous cofactors YAP1 and TAZ. The Hippo pathway's functions in normal and cancer biology have been dissected by studies of mutant mice with null or conditional tissue-specific mutations of Hippo signaling elements. In this review, we attempt to systematically summarize results that have been gleaned from detailed in vivo characterizations of these mutants. Our goal is to describe the physiological roles of Hippo signaling in several normal organ systems, as well as to emphasize how disruption of the Hippo pathway, and particularly hyperactivation of YAP1/TAZ, can be oncogenic.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Animais , Polaridade Celular/genética , Matriz Extracelular/genética , Via de Sinalização Hippo , Humanos , Camundongos , Mutação/genética , Transdução de Sinais/genética , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
16.
J Biochem ; 161(3): 237-244, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003431

RESUMO

The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Via de Sinalização Hippo , Humanos , Neoplasias/patologia , Proteínas Serina-Treonina Quinases/metabolismo
17.
J Biol Chem ; 289(30): 20802-12, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24923447

RESUMO

The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.


Assuntos
Nucléolo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Estresse Fisiológico/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitinação/fisiologia , Antineoplásicos/farmacologia , Células HEK293 , Células HeLa , Humanos , Inibidores de Proteassoma/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Ubiquitinação/efeitos dos fármacos
18.
PLoS One ; 8(11): e80583, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236186

RESUMO

Viral genetic diversity within infected cells or tissues, called viral quasispecies, has been mostly studied for RNA viruses, but has also been described among DNA viruses, including human papillomavirus type 16 (HPV16) present in cervical precancerous lesions. However, the extent of HPV genetic variation in cervical specimens, and its involvement in HPV-induced carcinogenesis, remains unclear. Here, we employ deep sequencing to comprehensively analyze genetic variation in the HPV16 genome isolated from individual clinical specimens. Through overlapping full-circle PCR, approximately 8-kb DNA fragments covering the whole HPV16 genome were amplified from HPV16-positive cervical exfoliated cells collected from patients with either low-grade squamous intraepithelial lesion (LSIL) or invasive cervical cancer (ICC). Deep sequencing of the amplified HPV16 DNA enabled de novo assembly of the full-length HPV16 genome sequence for each of 7 specimens (5 LSIL and 2 ICC samples). Subsequent alignment of read sequences to the assembled HPV16 sequence revealed that 2 LSILs and 1 ICC contained nucleotide variations within E6, E1 and the non-coding region between E5 and L2 with mutation frequencies of 0.60% to 5.42%. In transient replication assays, a novel E1 mutant found in ICC, E1 Q381E, showed reduced ability to support HPV16 origin-dependent replication. In addition, partially deleted E2 genes were detected in 1 LSIL sample in a mixed state with the intact E2 gene. Thus, the methods used in this study provide a fundamental framework for investigating the influence of HPV somatic genetic variation on cervical carcinogenesis.


Assuntos
Variação Genética , Papillomavirus Humano 16/genética , Substituição de Aminoácidos , Sequência de Bases , Linhagem Celular , DNA Viral , Feminino , Ordem dos Genes , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Papillomavirus Humano 16/isolamento & purificação , Humanos , Dados de Sequência Molecular , Mutação , Taxa de Mutação , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , Alinhamento de Sequência , Deleção de Sequência , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Replicação Viral
19.
Biochem Biophys Res Commun ; 440(1): 150-6, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24055031

RESUMO

Phosphoinositides function as fundamental signaling molecules and play roles in diverse cellular processes. Certain types of viruses may employ host cell phosphoinositide signaling systems to facilitate their replication cycles. Here we demonstrate that the ß isoform of class II PI3K (PI3K-C2ß) plays an indispensable role in hepatitis C virus (HCV) propagation in human hepatocellular carcinoma cells. Knockdown of PI3K-C2ß abrogated HCV propagation in the cell. Using an HCV replicon system, we found that knockdown of PI3K-C2ß substantially repressed the full-genome replication, while showing relatively small reductions in sub-genome replication, in which structural proteins including core protein were deleted. We also found that HCV core protein showed the binding activity towards D4-phosphorylated phosphoinositides and overlapped localization with phosphatidylinositol 3,4-bisphosphate in the cell. These results suggest that the phosphoinositide generated by PI3K-C2ß plays an indispensable role in the HCV replication cycle through the binding to HCV core protein.


Assuntos
Carcinoma Hepatocelular/virologia , Hepacivirus/fisiologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Neoplasias Hepáticas/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral , Linhagem Celular Tumoral , Classe II de Fosfatidilinositol 3-Quinases , Técnicas de Silenciamento de Genes , Humanos , Fígado/virologia , Fosfatidilinositol 3-Quinases/genética , Proteínas do Core Viral/metabolismo
20.
Cancer Sci ; 104(10): 1271-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23829894

RESUMO

The Hippo pathway is an evolutionarily conserved kinase cascade involved in cell growth, apoptosis, development and migration. It is also crucial for stem cell self-renewal and the maintenance of genomic stability. In addition, this pathway has the unique capacities to sense aspects of tissue architecture, such as cell polarity and mechanical tensions imposed by the surrounding microenvironment, and to control organ size and shape. All of these properties are frequently altered in tumor cells. In this review, we summarize how dysregulation of mammalian Hippo signaling is implicated in cancer.


Assuntos
Mamíferos/metabolismo , Proteínas de Neoplasias/fisiologia , Neoplasias/enzimologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Transformação Celular Neoplásica , Proteínas de Drosophila/fisiologia , Ativação Enzimática , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Camundongos Mutantes , Oncogenes , Especificidade da Espécie , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...