Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1143, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29070845

RESUMO

A fundamental issue concerning iron-based superconductivity is the roles of electronic nematicity and magnetism in realising high transition temperature (T c). To address this issue, FeSe is a key material, as it exhibits a unique pressure phase diagram involving non-magnetic nematic and pressure-induced antiferromagnetic ordered phases. However, as these two phases in FeSe have considerable overlap, how each order affects superconductivity remains perplexing. Here we construct the three-dimensional electronic phase diagram, temperature (T) against pressure (P) and isovalent S-substitution (x), for FeSe1-x S x . By simultaneously tuning chemical and physical pressures, against which the chalcogen height shows a contrasting variation, we achieve a complete separation of nematic and antiferromagnetic phases. In between, an extended non-magnetic tetragonal phase emerges, where T c shows a striking enhancement. The completed phase diagram uncovers that high-T c superconductivity lies near both ends of the dome-shaped antiferromagnetic phase, whereas T c remains low near the nematic critical point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...