Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 116: 126-135, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27060764

RESUMO

Histone deacetylase (HDAC) inhibitors have been recognized as promising approaches to the treatment of various human diseases including cancer, inflammation, neurodegenerative diseases, and metabolic disorders. Several pan-HDAC inhibitors are currently approved only as anticancer drugs. Interestingly, SAHA (vorinostat), one of clinically available pan-HDAC inhibitors, shows an anti-inflammatory effect at concentrations lower than those required for inhibition of tumor cell growth. It was also reported that HDAC6 selective inhibitor tubastatin A has anti-inflammatory and anti-rheumatic effect. In our efforts to develop novel HDAC inhibitors, we rationally designed various HDAC inhibitors based on the structures of two hit compounds identified by virtual screening of chemical database. Among them, 9a ((E)-N-hydroxy-4-(2-styrylthiazol-4-yl)butanamide) was identified as a HDAC6 selective inhibitor (IC50 values of 0.199 µM for HDAC6 versus 13.8 µM for HDAC1), and it did not show significant cytotoxicity against HeLa cells. In vivo biological evaluation of 9a was conducted on a lipopolysaccharide (LPS)-induced mouse model of sepsis. The compound 9a significantly improved 40% survival rate (P = 0.0483), and suppressed the LPS-induced increase of TNF-α and IL-6 mRNA expression in the liver of mice. Our study identified novel HDAC6 selective inhibitor 9a, which may serve as a potential lead for the development of anti-inflammatory or anti-sepsis agents.


Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Sepse/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Células HeLa , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/química , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica
2.
J Biol Chem ; 289(7): 4515-31, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24362025

RESUMO

GAT107, the (+)-enantiomer of racemic 4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide, is a strong positive allosteric modulator (PAM) of α7 nicotinic acetylcholine receptor (nAChR) activation by orthosteric agonists with intrinsic allosteric agonist activities. The direct activation produced by GAT107 in electrophysiological studies is observed only as long as GAT107 is freely diffusible in solution, although the potentiating activity primed by GAT107 can persist for over 30 min after drug washout. Direct activation is sensitive to α7 nAChR antagonist methyllycaconitine, although the primed potentiation is not. The data are consistent with GAT107 activity arising from two different sites. We show that the coupling between PAMs and the binding of orthosteric ligands requires tryptophan 55 (Trp-55), which is located at the subunit interface on the complementary surface of the orthosteric binding site. Mutations of Trp-55 increase the direct activation produced by GAT107 and reduce or prevent the synergy between allosteric and orthosteric binding sites, so that these mutants can also be directly activated by other PAMs such as PNU-120596 and TQS, which do not activate wild-type α7 in the absence of orthosteric agonists. We identify Tyr-93 as an essential element for orthosteric activation, because Y93C mutants are insensitive to orthosteric agonists but respond to GAT107. Our data show that both orthosteric and allosteric activation of α7 nAChR require cooperative activity at the interface between the subunits in the extracellular domain. These cooperative effects rely on key aromatic residues, and although mutations of Trp-55 reduce the restraints placed on the requirement for orthosteric agonists, Tyr-93 can conduct both orthosteric activation and desensitization among the subunits.


Assuntos
Ativadores de Enzimas/farmacologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Substituição de Aminoácidos , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Aminoácidos Aromáticos/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/química , Feminino , Humanos , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Quinolinas/química , Sulfonamidas/química , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/genética
3.
Proc Natl Acad Sci U S A ; 104(22): 9230-5, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17517649

RESUMO

The humanized monoclonal antibody HzKR127 recognizes the preS1 domain of the human hepatitis B virus surface proteins with a broadly neutralizing activity in vivo. We present the crystal structures of HzKR127 Fab and its complex with a major epitope peptide. In the complex structure, the bound peptide forms a type IV beta-turn followed by 3(10) helical turn, the looped-out conformation of which provides a structural basis for broad neutralization. Upon peptide binding, the antibody undergoes a dramatic complementarity determining region H3 lid opening. To understand the structural implication of the virus neutralization, we carried out comprehensive alanine-scanning mutagenesis of all complementarity determining region residues in HzKR127 Fab. The functional mapping of the antigen-combining site demonstrates the specific roles of major binding determinants in antigen binding, contributing to the rational design for maximal humanization and affinity maturation of the antibody.


Assuntos
Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Anticorpos Anti-Hepatite B/química , Anticorpos Anti-Hepatite B/imunologia , Sequência de Aminoácidos , Antígenos/química , Antígenos/imunologia , Sítios de Ligação , Regiões Determinantes de Complementaridade/farmacologia , Cristalografia por Raios X , Anticorpos Anti-Hepatite B/genética , Anticorpos Anti-Hepatite B/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Estrutura Quaternária de Proteína , Sensibilidade e Especificidade , Proteínas Virais/química , Proteínas Virais/imunologia
4.
J Immunol Methods ; 283(1-2): 77-89, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14659901

RESUMO

Previously, a murine monoclonal antibody (mAb) KR127 (IgG2a/kappa) that binds specifically to the preS1 of hepatitis B virus (HBV) was generated and the fine epitope was mapped to amino acids (aa) 37-45 (NSNNPDWDF). In this current study, the epitope in combination with KR127 was tested for protein tagging. Initially, to evaluate the importance of each residue of the KR127 epitope in antibody binding, alanine substitution mutants of the epitope were constructed and characterized for KR127 binding by immunoblot analysis and competition ELISA. The results showed that substitution of Ser(38) by alanine (S38A) increased the affinity to KR127. The mutated epitope (NANNPDWDF), designated S1 tag, was fused to the amino (N)- or carboxyl (C)-terminus of three human recombinant proteins, soluble B lymphocyte stimulator (sBLyS), the N-terminal domain of thrombopoietin (nTPO), and a mitochondrial ribosomal protein (CGI-113) for expression in mammalian cells, while it was fused to the N- or C-terminus of two proteins, a single-chain antibody fragment (ScFv) and the carboxyl-terminal domain (PAc) of the protective antigen of Bacillus anthracis for expression in Escherichia coli. The immunodetection, immunoprecipitation, and affinity purification of the expressed S1-tagged proteins by KR127 were successfully demonstrated. In addition, a KR127 mutant (AP2) with higher affinity, K(d) (0.9 nM), for the S1 tag compared to that (20 nM) of KR127 was obtained by mutational analysis of the heavy chain CDR3 (HCDR3) of KR127. The AP2 antibody was 4-fold more sensitive in detecting the S1-tagged protein than KR127. The S1 tag-KR127 or AP2 combination could be universally used for monitoring protein expression, localizing proteins, and protein purification, as well as studying protein interactions.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Precursores de Proteínas/imunologia , Proteínas Recombinantes/análise , Animais , Células CHO , Cromatografia de Afinidade , Cricetinae , Escherichia coli/genética , Testes de Precipitina , Proteínas Recombinantes/isolamento & purificação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA