Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 241: 86-96, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28958563

RESUMO

The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe2+), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected.


Assuntos
Antioxidantes/química , Linho , Helianthus , Pectinas/análise , Estabilidade de Medicamentos , Emulsões , Óleo de Semente do Linho , Lipídeos , Oxirredução , Óleos de Plantas , Óleo de Girassol , Água
2.
Nat Struct Mol Biol ; 23(11): 965-973, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27669036

RESUMO

Mutations in TBC1D24 cause severe epilepsy and DOORS syndrome, but the molecular mechanisms underlying these pathologies are unresolved. We solved the crystal structure of the TBC domain of the Drosophila ortholog Skywalker, revealing an unanticipated cationic pocket conserved among TBC1D24 homologs. Cocrystallization and biochemistry showed that this pocket binds phosphoinositides phosphorylated at the 4 and 5 positions. The most prevalent patient mutations affect the phosphoinositide-binding pocket and inhibit lipid binding. Using in vivo photobleaching of Skywalker-GFP mutants, including pathogenic mutants, we showed that membrane binding via this pocket restricts Skywalker diffusion in presynaptic terminals. Additionally, the pathogenic mutations cause severe neurological defects in flies, including impaired synaptic-vesicle trafficking and seizures, and these defects are reversed by genetically increasing synaptic PI(4,5)P2 concentrations through synaptojanin mutations. Hence, we discovered that a TBC domain affected by clinical mutations directly binds phosphoinositides through a cationic pocket and that phosphoinositide binding is critical for presynaptic function.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfatidilinositóis/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Sítios de Ligação , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Cristalografia por Raios X , Difusão , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Epilepsia/genética , Epilepsia/metabolismo , Proteínas Ativadoras de GTPase , Deformidades Congênitas da Mão/genética , Deformidades Congênitas da Mão/metabolismo , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/metabolismo , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Proteínas de Membrana , Modelos Moleculares , Mutação , Unhas Malformadas/genética , Unhas Malformadas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Conformação Proteica , Domínios Proteicos , Vesículas Sinápticas/química , Vesículas Sinápticas/genética , Vesículas Sinápticas/ultraestrutura , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/genética
3.
J Neurosci ; 36(6): 1914-29, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26865615

RESUMO

Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival. SIGNIFICANCE STATEMENT: We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Animais , Animais Geneticamente Modificados , Sobrevivência Celular/genética , Humanos , Larva/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Metais/metabolismo , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto/genética , Neurônios/fisiologia , Neurotransmissores/metabolismo , Técnicas de Patch-Clamp , Sinapses/fisiologia , Transmissão Sináptica/genética
4.
Neuron ; 88(4): 735-48, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26590345

RESUMO

Synapses are often far from their cell bodies and must largely independently cope with dysfunctional proteins resulting from synaptic activity and stress. To identify membrane-associated machines that can engulf synaptic targets destined for degradation, we performed a large-scale in vitro liposome-based screen followed by functional studies. We identified a presynaptically enriched chaperone Hsc70-4 that bends membranes based on its ability to oligomerize. This activity promotes endosomal microautophagy and the turnover of specific synaptic proteins. Loss of microautophagy slows down neurotransmission while gain of microautophagy increases neurotransmission. Interestingly, Sgt, a cochaperone of Hsc70-4, is able to switch the activity of Hsc70-4 from synaptic endosomal microautophagy toward chaperone activity. Hence, Hsc70-4 controls rejuvenation of the synaptic protein pool in a dual way: either by refolding proteins together with Sgt, or by targeting them for degradation by facilitating endosomal microautophagy based on its membrane deforming activity.


Assuntos
Autofagia/genética , Proteínas de Choque Térmico HSC70/genética , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Tomografia com Microscopia Eletrônica , Endossomos/metabolismo , Endossomos/ultraestrutura , Escherichia coli , Proteínas de Escherichia coli , Microscopia de Fluorescência , Chaperonas Moleculares , Polimerização , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sinapses/metabolismo , Sinapses/ultraestrutura , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura
5.
G3 (Bethesda) ; 4(12): 2381-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25298537

RESUMO

Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site. These restriction enzyme sites allow for double-strand break-mediated removal of unwanted flanking transposon sequences, while leaving the desired genomic modifications or recombination cassettes. As a proof-of-principle, we mutated LRRK, tau, and sky by using different MiMIC elements. We replaced 6 kb of genomic DNA encompassing the tau locus and 35 kb encompassing the sky locus with a recombination cassette that permits easy integration of DNA at these loci and we also generated a functional LRRK(HA) knock in allele. Given that ~92% of the Drosophila genes are located within the vicinity (<35 kb) of a MiMIC element, our methodology enables the efficient manipulation of nearly every locus in the fruit fly genome without the need for inefficient donor-dependent homologous recombination events.


Assuntos
Drosophila melanogaster/genética , Técnicas de Introdução de Genes , Alelos , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Recombinação Homóloga , Proteínas Serina-Treonina Quinases/genética , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...