Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 15(4): 102343, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615554

RESUMO

The burden of tick-borne diseases continues to increase in the United States. Tick surveillance has been implemented to monitor changes in the distribution and prevalence of human disease-causing pathogens in ticks that frequently bite humans. Such efforts require accurate identification of ticks to species and highly sensitive and specific assays that can detect and differentiate pathogens from genetically similar microbes in ticks that have not been demonstrated to be pathogenic in humans. We describe a modification to a next generation sequencing pathogen detection assay that includes a target that accurately identifies Ixodes ticks to species. We show that the replacement of internal control primers used to ensure assay performance with primers that also act as an internal control and can additionally differentiate tick species, retains high sensitivity and specificity, improves efficiency, and reduces costs by eliminating the need to run separate assays to screen for pathogens and for tick identification.

2.
Ticks Tick Borne Dis ; 15(1): 102270, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813001

RESUMO

Lyme disease is the most commonly reported vector-borne disease in the United States and is transmitted by Ixodes scapularis in the eastern US and I. pacificus in the west. The causative agents, Borrelia burgdorferi sensu stricto (Bbss) and B. mayonii belong to the B. burgdorferi sensu lato (Bbsl) species complex. An additional eight species of Bbsl have been identified in Ixodes species ticks in the US, but their geographic distribution, vector associations, human encounter rates and pathogenicity in humans are poorly defined. To better understand the geographic distribution and vector associations of Bbsl spirochetes in frequent and infrequent human-biting Ixodes species ticks in the US, we previously screened 29,517 host-seeking I. scapularis or I. pacificus ticks and 692 ticks belonging to eight other Ixodes species for Borrelia spirochetes using a previously described tick testing algorithm that utilizes a combination of real-time PCR and Sanger sequencing for Borrelia species identification. The assay was designed to detect known human pathogens spread by Ixodes species ticks, but it was not optimized to detect Bbsl co-infections. To determine if such co-infections were overlooked particularly in ticks infected with Bbss, we retested and analyzed a subsample of 845 Borrelia infected ticks using a next generation sequencing multiplex PCR amplicon sequencing (MPAS) assay that can identify Borrelia species and Bbsl co-infections. The assay also includes targets that can molecularly confirm identifications of Ixodes species ticks to better inform pathogen-vector associations. We show that Bbss is the most prevalent species in I. scapularis and I. pacificus; other Bbsl species were rarely detected in I. scapularis and the only Bbsl co-infections identified in I. scapularis were with Bbss and B. mayonii. We detected B. andersonii in I. dentatus in the Mid-Atlantic and Upper Midwest regions, B. kurtenbachii in I. scapularis in the Upper Midwest, B. bissettiae in I. pacificus and I. spinipalpis in the Northwest, and B. carolinensis in I. affinis in the Mid-Atlantic and Southeast, and B. lanei in I. spinipalpis in the Northwest. Twelve of 62 (19.4%) Borrelia-infected I. affinis from the Mid-Atlantic region were co-infected with Bbss and B. carolinensis. Our data support the notion that Bbsl species are maintained in largely independent enzootic cycles, with occasional spill-over resulting in multiple Bbsl species detected in Ixodes species ticks.


Assuntos
Borrelia burgdorferi , Borrelia , Coinfecção , Ixodes , Doença de Lyme , Animais , Estados Unidos/epidemiologia , Humanos , Borrelia burgdorferi/genética , Doença de Lyme/epidemiologia
3.
Ticks Tick Borne Dis ; 14(6): 102250, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703795

RESUMO

The majority of vector-borne disease cases reported in the United States (U.S.) are caused by pathogens spread by the blacklegged tick, Ixodes scapularis. In recent decades, the geographic ranges of the tick and its associated human pathogens have expanded, putting an increasing number of communities at risk for tick-borne infections. In 2018, the U.S. Centers for Disease Control and Prevention (CDC) initiated a national tick surveillance program to monitor changes in the distribution and abundance of ticks and the presence and prevalence of human pathogens in them. We assessed the geographical representativeness of prevalence data submitted to CDC as part of the national tick surveillance effort. We describe county, state, and regional variation in the prevalence of five human pathogens (Borrelia burgdorferi sensu stricto (s.s.), Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti) in host-seeking I. scapularis and I. pacificus nymphs and adults. Although I. scapularis and I. pacificus are widely distributed in the eastern and western U.S., respectively, pathogen prevalence was estimated predominantly in ticks collected in the Northeast, Ohio Valley, and Upper Midwest regions, where human Lyme disease cases are most commonly reported. Within these regions, we found that state and regional estimates of pathogen prevalence generally reached predictable and stable levels, but variation in prevalence estimates at the sub-state level was considerable. Borrelia burgdorferi s.s. was the most prevalent and widespread pathogen detected. Borrelia miyamotoi and A. phagocytophilum shared a similarly broad geographic range, but were consistently detected at much lower prevalence compared with B. burgdorferi s.s. Babesia microti was detected at similar prevalence to A. phagocytophilum, where both pathogens co-occurred, but was reported over a much more limited geographic range compared with A. phagocytophilum or B. burgdorferi s.s. Borrelia mayonii was identified at very low prevalence with a focal distribution within the Upper Midwest. National assessments of risk for tick-borne diseases need to be improved through collection and testing of ticks in currently under-represented regions, including the West, South, Southeast, and eastern Plains states.


Assuntos
Babesia microti , Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Ixodes , Adulto , Animais , Humanos , Estados Unidos/epidemiologia , Prevalência
4.
Ticks Tick Borne Dis ; 14(5): 102207, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247570

RESUMO

The Centers for Disease Control and Prevention's national tick and tick-borne pathogen surveillance program collects information to better understand the regional distribution, prevalence, and exposure risk of host-seeking medically important ticks in the United States. A recently developed next generation sequencing (NGS) targeted multiplex PCR amplicon sequencing (MPAS) assay has enhanced the detection capabilities for Ixodes-associated human pathogens found in Ixodes scapularis and Ixodes pacificus ticks compared to the routinely used real-time PCR assay. To operationalize the MPAS assay for the large number of tick surveillance submissions processed each year, a reproducible high throughput bioinformatics pipeline is needed. We describe the development and validation of the MPAS pipeline, a bioinformatics pipeline that identifies and summarizes amplicon sequences produced by the MPAS assay. This pipeline is portable and reproducible across different computing environments, and flexible by allowing modifications to input parameters, assay primer and reference sequences. The automation of the summary report, BLAST report, and phylogenetic analysis reduces the amount of time needed for downstream analysis. To validate this pipeline, we compared the analysis of a MPAS assay dataset consisting of 175 I. scapularis nymphs with the MPAS pipeline and previously published results analyzed with a CLC Genomic Workbench workflow. The MPAS pipeline identified the same number of positive ticks for Anaplasma phagocytophilum and Babesia species as the original analysis, but the MPAS pipeline provided enhanced sequencing resolution of Borrelia burgdorferi sensu lato co-infected samples. The reproducibility, flexibility, analysis automation, and improved sequence resolution of the MPAS pipeline make it well suited for a high throughput tick pathogen surveillance program.


Assuntos
Borrelia burgdorferi , Ixodes , Animais , Humanos , Filogenia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase em Tempo Real , Biologia Computacional
5.
Ticks Tick Borne Dis ; 14(5): 102202, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37244157

RESUMO

Human Lyme disease-primarily caused by the bacterium Borrelia burgdorferi sensu stricto (s.s.) in North America-is the most common vector-borne disease in the United States. Research on risk mitigation strategies during the last three decades has emphasized methods to reduce densities of the primary vector in eastern North America, the blacklegged tick (Ixodes scapularis). Controlling white-tailed deer populations has been considered a potential method for reducing tick densities, as white-tailed deer are important hosts for blacklegged tick reproduction. However, the feasibility and efficacy of white-tailed deer management to impact acarological risk of encountering infected ticks (namely, density of host-seeking infected nymphs; DIN) is unclear. We investigated the effect of white-tailed deer density and management on the density of host-seeking nymphs and B. burgdorferi s.s. infection prevalence using surveillance data from eight national parks and park regions in the eastern United States from 2014-2022. We found that deer density was significantly positively correlated with the density of nymphs (nymph density increased by 49% with a 1 standard deviation increase in deer density) but was not strongly correlated with the prevalence of B. burgdorferi s.s. infection in nymphal ticks. Further, while white-tailed deer reduction efforts were followed by a decrease in the density of I. scapularis nymphs in parks, deer removal had variable effects on B. burgdorferi s.s. infection prevalence, with some parks experiencing slight declines and others slight increases in prevalence. Our findings suggest that managing white-tailed deer densities alone may not be effective in reducing DIN in all situations but may be a useful tool when implemented in integrated management regimes.


Assuntos
Borrelia burgdorferi , Cervos , Ixodes , Doença de Lyme , Animais , Humanos , Ixodes/microbiologia , Ninfa/microbiologia , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doença de Lyme/veterinária
6.
Ticks Tick Borne Dis ; 14(4): 102167, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965260

RESUMO

Human cases of relapsing fever (RF) in North America are caused primarily by Borrelia hermsii and Borrelia turicatae, which are spread by argasid (soft) ticks, and by Borrelia miyamotoi, which is transmitted by ixodid (hard) ticks. In some regions of the United States, the ranges of the hard and soft tick RF species are known to overlap; in many areas, recorded ranges of RF spirochetes overlap with Lyme disease (LD) group Borrelia spirochetes. Identification of RF clusters or cases detected in unusual geographic localities might prompt public health agencies to investigate environmental exposures, enabling prevention of additional cases through locally targeted mitigation. However, exposure risks and mitigation strategies differ among hard and soft tick RF, prompting a need for additional diagnostic strategies that differentiate hard tick from soft tick RF. We evaluated the ability of new and previously described recombinant antigens in serological assays to differentiate among prior exposures in mice to LD, soft or hard tick RF spirochetes. We extracted whole-cell protein lysates from RF Borrelia cultures and synthesized six recombinant RF antigens (Borrelia immunogenic protein A (BipA) derived from four species of RF Borrelia, glycerophosphodiester phosphodiesterase (GlpQ), and Borrelia miyamotoi membrane antigen A (BmaA)) to detect reactivity in laboratory derived (Peromyscus sp. and Mus sp.) mouse serum infected with RF and LD Borrelia species. Among 44 Borrelia exposed mouse samples tested, all five mice exposed to LD spirochetes were correctly differentiated from the 39 mice exposed to RF Borrelia using the recombinant targets. Of the 39 mice exposed to RF spirochetes, 28 were accurately categorized to species of exposure (71%). Segregation among soft tick RF species (Borrelia hermsii, Borrelia parkeri and Borrelia turicatae) was inadequate (58%) owing to observed cross-reactivity among recombinant BipA protein targets. However, among the 28 samples accurately separated to species, all were accurately assigned to soft tick or hard tick RF type. Although not adequately specific to accurately categorize exposure to soft tick RF species, the recombinant BipA protein targets from soft and hard tick RF species show utility in accurately discriminating mouse exposures to LD or RF Borrelia, and accurately segregate hard tick from soft tick RF Borrelia exposure.


Assuntos
Argasidae , Borrelia , Ixodidae , Febre Recorrente , Picadas de Carrapatos , Animais , Camundongos , Humanos , Estados Unidos , Febre Recorrente/diagnóstico
7.
Appl Environ Microbiol ; 89(2): e0124422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744930

RESUMO

Ail confers serum resistance in humans and is a critical virulence factor of Y. pestis, the causative agent of plague. Here, the contribution of Ail for Y. pestis survival in the flea vector was examined. Rat or human but not mouse sera were bactericidal against a Y. pestis Δail mutant at 28°C in vitro. Complement components deposited rapidly on the Y. pestis surface as measured by immunofluorescent microscopy. Ail reduced the amount of active C3b on the Y. pestis surface. Human sera retained bactericidal activity against a Y. pestis Δail mutant in the presence of mouse sera. However, in the flea vector, the serum protective properties of Ail were not required. Flea colonization studies using murine sera and Y. pestis KIM6+ wild type, a Δail mutant, and the Δail/ail+ control showed no differences in bacterial prevalence or numbers during the early stage of flea colonization. Similarly, flea studies with human blood showed Ail was not required for serum resistance. Finally, a variant of Ail (AilF100V E108_S109insS) from a human serum-sensitive Y. pestis subsp. microtus bv. Caucasica 1146 conferred resistance to human complement when expressed in the Y. pestis KIM6+ Δail mutant. This indicated that Ail activity was somehow blocked, most likely by lipooligosaccharide, in this serum sensitive strain. IMPORTANCE This work contributes to our understanding of how highly virulent Y. pestis evolved from its innocuous enteric predecessor. Among identified virulence factors is the attachment invasion locus protein, Ail, that is required to protect Y. pestis from serum complement in all mammals tested except mice. Murine sera is not bactericidal. In this study, we asked, is bactericidal sera from humans active in Y. pestis colonized fleas? We found it was not. The importance of this observation is that it identifies a protective niche for the growth of serum sensitive and nonsensitive Y. pestis strains.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Camundongos , Ratos , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Mamíferos , Peste/microbiologia , Sifonápteros/metabolismo , Sifonápteros/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Yersinia pestis/genética , Yersinia pestis/metabolismo , Complemento C3b/metabolismo , Complemento C3b/farmacologia
8.
Ticks Tick Borne Dis ; 13(5): 102000, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785605

RESUMO

Lyme disease is the most commonly reported vector-borne disease in the United States (US), with approximately 300,000 -to- 40,000 cases reported annually. The blacklegged tick, Ixodes scapularis, is the primary vector of the Lyme disease-causing spirochete, Borrelia burgdorferi sensu stricto, in high incidence regions in the upper midwestern and northeastern US. Using county-level records of the presence of I. scapularis or presence of B. burgdorferi s.s. infected host-seeking I. scapularis, we generated habitat suitability consensus maps based on an ensemble of statistical models for both acarological risk metrics. Overall accuracy of these suitability models was high (AUC = 0.76 for I. scapularis and 0.86 for B. burgdorferi s.s. infected-I. scapularis). We sought to compare which acarological risk metric best described the distribution of counties reporting high Lyme disease incidence (≥10 confirmed cases/100,000 population) by setting the models to a fixed omission rate (10%). We compared the percent of high incidence counties correctly classified by the two models. The I. scapularis consensus map correctly classified 53% of high and low incidence counties, while the B. burgdorferi s.s. infected-I. scapularis consensus map classified 83% correctly. Counties classified as suitable by the B. burgdorferi s.s. map showed a 91% overlap with high Lyme disease incidence counties with over a 38-fold difference in Lyme disease incidence between high- and low-suitability counties. A total of 288 counties were classified as highly suitable for B. burgdorferi s.s., but lacked records of infected-I. scapularis and were not classified as high incidence. These counties were considered to represent a leading edge for B. burgdorferi s.s. infection in ticks and humans. They clustered in Illinois, Indiana, Michigan, and Ohio. This information can aid in targeting tick surveillance and prevention education efforts in counties where Lyme disease risk may increase in the future.


Assuntos
Borrelia burgdorferi , Ixodes , Doença de Lyme , Animais , Ecossistema , Humanos , Incidência , Doença de Lyme/epidemiologia , Estados Unidos/epidemiologia
9.
J Med Entomol ; 59(4): 1328-1335, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35583265

RESUMO

Tickborne disease cases account for over 75% of reported vector-borne disease cases in the United States each year. In addition to transmitting the agents of Lyme disease (Borrelia burgdorferi sensu strict [Spirochaetales: Spirochaetaceae] and Borrelia mayonii [Spirochaetales: Spirochaetaceae]), the blacklegged tick, Ixodes scapularis, and the western blacklegged tick, Ixodes pacificus collectively transmit five additional human pathogens. By mapping the distributions of tickborne pathogens in host-seeking ticks, we can understand where humans are at risk of contracting tickborne diseases and devise targeted strategies to prevent them. Using publicly available tickborne pathogen surveillance databases, internal CDC pathogen testing databases, and SCOPUS search records published since 2000, we mapped the county-level distribution of Borrelia miyamotoi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), Ehrlichia muris eauclairensis (Rickettsiales: Ehrlichiaceae), Babesia microti (Piroplasmida: Babesiidae), and Powassan virus (Flaviviridae) reported in host-seeking I. scapularis or I. pacificus in the contiguous United States. We also updated recently published maps of the distributions of Borrelia burgdorferi sensu stricto and Borrelia mayonii. All seven pathogen distributions were more limited than the distributions of vector ticks, with at least one of the seven pathogens detected in 30 states out of 41 total states (73.2% of states) where vector ticks are considered to be established. Prevention and diagnosis of tickborne diseases rely on an accurate understanding by the public and health care providers of where people are at risk for exposure to infected ticks. Our county-level pathogen distribution maps expand on previous efforts showing the distribution of Lyme disease spirochetes and highlight counties where further investigation may be warranted.


Assuntos
Anaplasma phagocytophilum , Borrelia burgdorferi , Ixodes , Ixodidae , Doença de Lyme , Doenças Transmitidas por Carrapatos , Animais , Humanos , Spirochaetales , Doenças Transmitidas por Carrapatos/epidemiologia , Estados Unidos
10.
Front Microbiol ; 13: 863142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464914

RESUMO

Rapid detection of Yersinia pestis, the causative agent of plague, is essential during field investigations to enable prompt control measures for prevention of the spread of the disease. Affordable, efficient, reliable, and simple detection assays are extremely useful, particularly in plague-endemic regions with limited resources. We developed a loop-mediated isothermal amplification (LAMP) assay that detects Y. pestis within 30 min by simply incubating at 65°C on a dry bath heater. The assay targeted the caf1A gene that is situated on the pMT1 plasmid using six specific primers. Y. pestis presence is visually detected based on the color change in the reactions. For comparison of the assay performance, a real-time LAMP with fluorescent dye detection was conducted on a real-time PCR instrument using the same six primers. Sensitivity assessment showed that the limit of detection (LOD) was 0.2 and 0.03 pg when performed on the dry bath heater and on the real-time PCR instrument, respectively. The assay was 100% specific, having no cross-reactivity with closely related Yersinia spp. and other bacterial species. We tested the LAMP assay on field-collected fleas and showed that it successfully detected Y. pestis with identical results to that of a previously published pentaplex real-time PCR assay. These findings suggest that the relatively inexpensive and simpler LAMP assay could be used to support field investigations, yielding comparable results to more expensive and complex PCR assays.

11.
Zoonoses Public Health ; 69(2): 143-148, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958171

RESUMO

The Asian longhorned tick, Haemaphysalis longicornis, an invasive species associated with human pathogens, has spread rapidly across the eastern USA. Questing H. longicornis ticks recovered from active surveillance conducted from 1 May to 6 September, 2019 throughout Pennsylvania were tested for rickettsial pathogens. Of 265 ticks tested by PCR for pathogens, 4 (1.5%) were positive for Anaplasma phagocytophilum. Sequence analysis of the 16S rRNA gene confirmed two positives as A. phagocytophilum-human agent variant. This is the first reported detection of A. phagocytophilum-human pathogenic strain DNA in exotic H. longicornis collected in the USA.


Assuntos
Anaplasma phagocytophilum , Ixodidae , Carrapatos , Anaplasma phagocytophilum/genética , Animais , Humanos , Pennsylvania/epidemiologia , RNA Ribossômico 16S/genética
12.
Psychol Belg ; 61(1): 262-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540263

RESUMO

INTRODUCTION: To limit the spread of COVID-19, many countries, including Belgium, have installed physical distancing measures. Yet, adherence to these newly installed behavioral measures has been described as challenging and effortful. Based on the Health Action Process Approach (HAPA) model, this study performed an in-depth evaluation of when, why, and how people deviated from the physical distancing measures. METHODS: An online mixed-method study was conducted among Belgian adults (N = 2055) in the beginning of May 2020. Participants were recruited via an open call through email and social media platforms, using snowball sampling. Conditions wherein people deviated from the physical distancing measures were assessed by means of an open-ended question. HAPA determinants were assessed in a quantitative way. RESULTS: Half of the sample reported to deviate from the measures. Further, deviation from the measures was associated with each determinant outlined by the HAPA. Findings highlight that many people deviated from the measures because of their need for social contact. The majority of the people who deviated from the measures stated that they carefully weighed the risks of their behavior. CONCLUSIONS: Need for social contact pushed people to deviate from physical distancing measures in a deliberate manner. Potential areas for future interventions aimed at promoting adherence to physical distancing measures and enhancing psychosocial well-being are discussed.

13.
J Med Entomol ; 58(6): 2154-2160, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33956124

RESUMO

Borrelia miyamotoi is a hard tick-associated relapsing fever spirochete that is geographically widespread in Ixodes spp. (Acari: Ixodidae) ticks, but typically occurs at low prevalence. Genetic variability has been described among strains derived from Asia, Europe, and North America, and among tick species that carry the infection, but little variability has been described within foci or tick species. Capitalizing on access to B. miyamotoi nucleic acid extracted from host-seeking Ixodes scapularis Say or Ixodes pacificus Cooley & Kohls from 16 states, we explored genetic variability based on sequence analysis of four amplicons described herein. Consistent with previous studies, we detected significant genetic differences between strains derived from I. scapularis (eastern United States) and I. pacificus (western United States) and identified two distinct sequences in the western United States (Am-West-1 and Am-West-2). Unique to this study, we identified two distinct sequences in the eastern United States (Am-East-1 and Am-East-2). Based on the 161 samples we analyzed, Am-East-1 was the only type represented in 50 B. miyamotoi-infected ticks collected from the Northeast (Vermont, Maine, New York, Connecticut, and Rhode Island), whereas ticks collected from the North-Central and Mid-Atlantic states harbored B. miyamotoi comprised of both Am-East-1 and Am-East-2. Further studies are needed to better characterize the phylogeography of B. miyamotoi and to discern if there are biologically meaningful differences among sequence types. To facilitate further exploration, we developed a polymerase chain reaction (PCR) assay designed to differentiate Am-East-1, Am-East-2, and Am-West sequence types without having to sequence the amplicon.


Assuntos
Borrelia/genética , Variação Genética , Ixodes/microbiologia , Reação em Cadeia da Polimerase/métodos , Animais , Geografia , Sensibilidade e Especificidade , Especificidade da Espécie , Estados Unidos
14.
J Med Entomol ; 58(3): 1219-1233, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33600574

RESUMO

Lyme disease is the most common vector-borne disease in the United States. While Lyme disease vectors are widespread, high incidence states are concentrated in the Northeast, North Central and Mid-Atlantic regions. Mapping the distribution of Lyme disease spirochetes in ticks may aid in providing data-driven explanations of epidemiological trends and recommendations for targeting prevention strategies to communities at risk. We compiled data from the literature, publicly available tickborne pathogen surveillance databases, and internal CDC pathogen testing databases to map the county-level distribution of Lyme disease spirochetes reported in host-seeking Ixodes pacificus and Ixodes scapularis across the contiguous United States. We report B. burgdorferi s.s.-infected I. scapularis from 384 counties spanning 26 eastern states located primarily in the North Central, Northeastern, and Mid-Atlantic regions, and in I. pacificus from 20 counties spanning 2 western states, with most records reported from northern and north-coastal California. Borrelia mayonii was reported in I. scapularis in 10 counties in Minnesota and Wisconsin in the North Central United States, where records of B. burgdorferi s.s. were also reported. In comparison to a broad distribution of vector ticks, the resulting map shows a more limited distribution of Lyme disease spirochetes.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Spirochaetales/isolamento & purificação , Animais , Especificidade da Espécie , Estados Unidos
16.
J Fish Biol ; 99(1): 49-60, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33559136

RESUMO

The current and projected environmental change of the Arctic Ocean contrasts sharply with the limited knowledge of its genetic biodiversity. Polar cod Boreogadus saida (Lepechin, 1774) is an abundant circumpolar marine fish and ecological key species. The central role of polar cod in the Arctic marine food web warrants a better understanding of its population structure and connectivity. In this study, the genetic population structure of 171 juveniles, collected from several fjords off West-Svalbard (Billefjorden, Hornsund and Kongsfjorden), the northern Sophia Basin and the Eurasian Basin of the Arctic Ocean, was analysed using nine DNA microsatellite loci. Genetic analyses indicated moderate to high genetic diversity, but absence of spatial population structure and isolation-by-distance, suggesting ongoing gene flow between the studied sampling regions. High levels of connectivity may be key for polar cod to maintain populations across wide spatial scales. The adaptive capacity of the species will be increasingly important to face challenges such as habitat fragmentation, ocean warming and changes in prey composition. In view of a limited understanding of the population dynamics and evolution of polar cod, a valuable next step to predict future developments should be an integrated biological evaluation, including population genomics, a life-history approach, and habitat and biophysical dispersal modelling.


Assuntos
Gadiformes , Fluxo Gênico , Animais , Regiões Árticas , Ecossistema , Svalbard
17.
Emerg Infect Dis ; 27(2): 608-611, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496234

RESUMO

We collected questing Haemaphysalis longicornis ticks from southeastern counties of Pennsylvania, USA. Of 263 ticks tested by PCR for pathogens, 1 adult female was positive for Borrelia burgdorferi sensu stricto, yielding a 0.4% infection rate. Continued monitoring of this invasive tick is essential to determine its public health role.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Ixodidae , Doença de Lyme , Carrapatos , Animais , Borrelia burgdorferi/genética , Grupo Borrelia Burgdorferi/genética , DNA , Feminino , Pennsylvania/epidemiologia
18.
Ticks Tick Borne Dis ; 12(2): 101637, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360805

RESUMO

As the geographic distributions of medically important ticks and tick-borne pathogens continue to expand in the United States, the burden of tick-borne diseases continues to increase along with a growing risk of coinfections. Coinfection with multiple tick-borne pathogens may amplify severity of disease and complicate diagnosis and treatment. By testing 13,400 Ixodes ticks from 17 US states spanning five geographical regions for etiological agents of Lyme disease (Borrelia burgdorferi sensu stricto [s.s.] and Borrelia mayonii), Borrelia miyamotoi disease (Borrelia miyamotoi), anaplasmosis (Anaplasma phagocytophilum), and babesiosis (Babesia microti) we show that B. burgdorferi s.s. was the most prevalent and widespread pathogen. Borrelia miyamotoi, A. phagocytophilum, and B. microti were widespread but less prevalent than B. burgdorferi s.s. Coinfections with B. burgdorferi s.s. and A. phagocytophilum or B. microti were most common in the Northeast and occurred at rates higher than expected based on rates of single infections in that region.


Assuntos
Anaplasmose/epidemiologia , Babesiose/epidemiologia , Infecções por Borrelia/epidemiologia , Ixodes/microbiologia , Anaplasma/isolamento & purificação , Anaplasmose/microbiologia , Animais , Babesia/isolamento & purificação , Babesiose/microbiologia , Borrelia/isolamento & purificação , Infecções por Borrelia/microbiologia , Humanos , Estados Unidos/epidemiologia
19.
Appl Psychol Health Well Being ; 12(4): 1224-1243, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33052008

RESUMO

BACKGROUND: The COVID-19 pandemic requires massive and rapid behavior change. The Health Action Process Approach (HAPA) describes personal determinants that play a key role in behavior change. This study investigated whether these determinants are associated with adherence to physical distancing measures to prevent the spread of COVID-19 (i.e. keeping 1.5 m physical distance and staying at home). Decreased psychosocial well-being and lack of social support were explored as barriers to adherence. METHODS: Two cross-sectional surveys were conducted among adults in Belgium. The first survey (N = 2,379; March 2020) focused on adherence to physical distancing measures. The second survey (N = 805; April 2020) focused on difficulty with, and perseverance in, adhering to these measures. Linear regression models were fitted to examine associations with HAPA determinants, psychosocial well-being, and social support. RESULTS: Self-efficacy, outcome expectancies, intention, action planning, and coping planning were related to adhering to, difficulty with, and perseverance in, adhering to physical distancing measures. Decreased psychosocial well-being and lack of social support were related to more difficulties with adhering to physical distancing and lower perseverance. CONCLUSIONS: Health action process approach determinants are associated with adherence to physical distancing measures. Future work could design HAPA-based interventions to support people in adhering to these measures.


Assuntos
Adaptação Psicológica , Comportamentos Relacionados com a Saúde , Distanciamento Físico , Apoio Social , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bélgica , Estudos Transversais , Feminino , Fidelidade a Diretrizes , Humanos , Intenção , Masculino , Pessoa de Meia-Idade , Satisfação Pessoal , Autoeficácia , Adulto Jovem
20.
Ticks Tick Borne Dis ; 9(6): 1499-1507, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055987

RESUMO

In the north-central United States, the blacklegged tick (Ixodes scapularis) is currently known to vector seven human pathogens. These include five bacteria (Borrelia burgdorferi sensu stricto, Borrelia mayonii, Borrelia miyamotoi, Anaplasma phagocytophilum, Ehrlichia muris eauclairensis), one protozoan (Babesia microti) and one virus (Powassan). We sought to assess the prevalence and distribution of these pathogens in host-seeking nymphs collected throughout Minnesota, a state on the northwestern edge of the tick's expanding range, where reported cases of I. scapularis-borne diseases have increased in incidence and geographic range over the past decade. Among the 1240 host-seeking I. scapularis nymphs that we screened from 64 sites, we detected all seven pathogens at varying frequencies. Borrelia burgdorferi s.s. was the most prevalent and geographically widespread, found in 25.24% of all nymphs tested. Anaplasma phagocytophilum and Babesia microti were also geographically widespread, but they were less prevalent than Bo. burgdorferi s.s. (detected in 6.29% and 4.68% of ticks, respectively). Spatial clusters of sites with high prevalence for these three pathogens were identified in the north-central region of the state. Prevalence was less than 1.29% for each of the remaining pathogens. Two or more pathogens were detected in 90 nymphs (7.26%); coinfections with Bo. burgdorferi s.s. and either A. phagocytophilum (51 nymphs, 4.11%) or Ba. microti (43 nymphs, 3.47%) were the most common combinations. The distribution and density of infected ticks mirrors the distribution of notifiable tick-borne diseases in Minnesota and provides information on the distribution and prevalence of recently described human pathogens.


Assuntos
Ixodes/microbiologia , Ixodes/parasitologia , Anaplasma phagocytophilum/isolamento & purificação , Animais , Babesia microti/isolamento & purificação , Borrelia/isolamento & purificação , Ehrlichia/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Ixodes/crescimento & desenvolvimento , Ixodes/virologia , Minnesota , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Ninfa/parasitologia , Ninfa/virologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...