Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 75(1): 295-302, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378349

RESUMO

OBJECTIVE: In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLS) that line joint synovial membranes aggressively invade the extracellular matrix, destroying cartilage and bone. As signal transduction in FLS is mediated through multiple pathways involving protein tyrosine phosphorylation, we sought to identify protein tyrosine phosphatases (PTPs) regulating the invasiveness of RA FLS. We describe that the transmembrane receptor PTPκ (RPTPκ), encoded by the transforming growth factor (TGF) ß-target gene, PTPRK, promotes RA FLS invasiveness. METHODS: Gene expression was quantified by quantitative PCR. PTP knockdown was achieved using antisense oligonucleotides. FLS invasion and migration were assessed in transwell or spot assays. FLS spreading was assessed by immunofluorescence microscopy. Activation of signalling pathways was analysed by Western blotting of FLS lysates using phosphospecific antibodies. In vivo FLS invasiveness was assessed by intradermal implantation of FLS into nude mice. The RPTPκ substrate was identified by pull-down assays. RESULTS: PTPRK expression was higher in FLS from patients with RA versus patients with osteoarthritis, resulting from increased TGFB1 expression in RA FLS. RPTPκ knockdown impaired RA FLS spreading, migration, invasiveness and responsiveness to platelet-derived growth factor, tumour necrosis factor and interleukin 1 stimulation. Furthermore, RPTPκ deficiency impaired the in vivo invasiveness of RA FLS. Molecular analysis revealed that RPTPκ promoted RA FLS migration by dephosphorylation of the inhibitory residue Y527 of SRC. CONCLUSIONS: By regulating phosphorylation of SRC, RPTPκ promotes the pathogenic action of RA FLS, mediating cross-activation of growth factor and inflammatory cytokine signalling by TGFß in RA FLS.


Assuntos
Artrite Reumatoide/patologia , Fibroblastos/patologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/fisiologia , Membrana Sinovial/patologia , Fator de Crescimento Transformador beta1/fisiologia , Animais , Artrite Reumatoide/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Fibroblastos/transplante , Regulação Enzimológica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos Nus , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia , RNA Mensageiro/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/transplante , Regulação para Cima
2.
PLoS One ; 10(6): e0129264, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061731

RESUMO

There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.


Assuntos
Toxinas Botulínicas/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Neurônios Motores/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Toxinas Botulínicas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Proteínas SNARE/metabolismo
3.
Arthritis Rheum ; 65(5): 1171-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23335101

RESUMO

OBJECTIVE: The fibroblast-like synoviocytes (FLS) in the synovial intimal lining of the joint are key mediators of inflammation and joint destruction in rheumatoid arthritis (RA). In RA, these cells aggressively invade the extracellular matrix, producing cartilage-degrading proteases and inflammatory cytokines. The behavior of FLS is controlled by multiple interconnected signal transduction pathways involving reversible phosphorylation of proteins on tyrosine residues. However, little is known about the role of the protein tyrosine phosphatases (PTPs) in FLS function. This study was undertaken to explore the expression of all of the PTP genes (the PTPome) in FLS. METHODS: A comparative screening of the expression of the PTPome in FLS from patients with RA and patients with osteoarthritis (OA) was conducted. The functional effect on RA FLS of SH2 domain-containing phosphatase 2 (SHP-2), a PTP that was up-regulated in RA, was then analyzed by knockdown using cell-permeable antisense oligonucleotides. RESULTS: PTPN11 was overexpressed in RA FLS compared to OA FLS. Knockdown of PTPN11, which encodes SHP-2, reduced the invasion, migration, adhesion, spreading, and survival of RA FLS. Additionally, signaling in response to growth factors and inflammatory cytokines was impaired by SHP-2 knockdown. RA FLS that were deficient in SHP-2 exhibited decreased activation of focal adhesion kinase and mitogen-activated protein kinases. CONCLUSION: These findings indicate that SHP-2 has a novel role in mediating human FLS function and suggest that it promotes the invasiveness and survival of RA FLS. Further investigation may reveal SHP-2 to be a candidate therapeutic target for RA.


Assuntos
Artrite Reumatoide/enzimologia , Fibroblastos/enzimologia , Osteoartrite/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Membrana Sinovial/enzimologia , Artrite Reumatoide/genética , Linhagem Celular , Movimento Celular , Fibroblastos/patologia , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Oligonucleotídeos Antissenso/farmacologia , Osteoartrite/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Tirosina Fosfatases/genética , Transdução de Sinais , Membrana Sinovial/patologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...