Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 29(4): 791-804, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36441800

RESUMO

PURPOSE: Leukemia inhibitory factor (LIF) is a multifunctional cytokine with numerous reported roles in cancer and is thought to drive tumor development and progression. Characterization of LIF and clinical-stage LIF inhibitors would increase our understanding of LIF as a therapeutic target. EXPERIMENTAL DESIGN: We first tested the association of LIF expression with transcript signatures representing multiple processes regulating tumor development and progression. Next, we developed MSC-1, a high-affinity therapeutic antibody that potently inhibits LIF signaling and tested it in immune competent animal models of cancer. RESULTS: LIF was associated with signatures of tumor-associated macrophages (TAM) across 7,769 tumor samples spanning 22 solid tumor indications. In human tumors, LIF receptor was highly expressed within the macrophage compartment and LIF treatment drove macrophages to acquire immunosuppressive capacity. MSC-1 potently inhibited LIF signaling by binding an epitope that overlaps with the gp130 receptor binding site on LIF. MSC-1 showed monotherapy efficacy in vivo and drove TAMs to acquire antitumor and proinflammatory function in syngeneic colon cancer mouse models. Combining MSC-1 with anti-PD1 leads to strong antitumor response and a long-term tumor-free survival in a significant proportion of treated mice. CONCLUSIONS: Overall, our findings highlight LIF as a therapeutic target for cancer immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Humanos , Camundongos , Terapia de Imunossupressão , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Macrófagos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral/genética
2.
Dev Cell ; 57(22): 2584-2598.e11, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413951

RESUMO

Autophagy is an essential catabolic process that promotes the clearance of surplus or damaged intracellular components. Loss of autophagy in age-related human pathologies contributes to tissue degeneration through a poorly understood mechanism. Here, we identify an evolutionarily conserved role of autophagy from yeast to humans in the preservation of nicotinamide adenine dinucleotide (NAD) levels, which are critical for cell survival. In respiring mouse fibroblasts with autophagy deficiency, loss of mitochondrial quality control was found to trigger hyperactivation of stress responses mediated by NADases of PARP and Sirtuin families. Uncontrolled depletion of the NAD(H) pool by these enzymes ultimately contributed to mitochondrial membrane depolarization and cell death. Pharmacological and genetic interventions targeting several key elements of this cascade improved the survival of autophagy-deficient yeast, mouse fibroblasts, and human neurons. Our study provides a mechanistic link between autophagy and NAD metabolism and identifies targets for interventions in human diseases associated with autophagic, lysosomal, and mitochondrial dysfunction.


Assuntos
NAD , Saccharomyces cerevisiae , Animais , Camundongos , Humanos , Sobrevivência Celular , Autofagia , Morte Celular
4.
Biochim Biophys Acta ; 1861(4): 269-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26778751

RESUMO

Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders.


Assuntos
Autofagia , Erros Inatos do Metabolismo Lipídico/metabolismo , Metabolismo dos Lipídeos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Animais , Autofagia/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Elife ; 52016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742086

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) is the key signaling hub that regulates cellular protein homeostasis, growth, and proliferation in health and disease. As a prerequisite for activation of mTORC1 by hormones and mitogens, there first has to be an available pool of intracellular amino acids. Arginine, an amino acid essential during mammalian embryogenesis and early development is one of the key activators of mTORC1. Herein, we demonstrate that arginine acts independently of its metabolism to allow maximal activation of mTORC1 by growth factors via a mechanism that does not involve regulation of mTORC1 localization to lysosomes. Instead, arginine specifically suppresses lysosomal localization of the TSC complex and interaction with its target small GTPase protein, Rheb. By interfering with TSC-Rheb complex, arginine relieves allosteric inhibition of Rheb by TSC. Arginine cooperates with growth factor signaling which further promotes dissociation of TSC2 from lysosomes and activation of mTORC1. Arginine is the main amino acid sensed by the mTORC1 pathway in several cell types including human embryonic stem cells (hESCs). Dependence on arginine is maintained once hESCs are differentiated to fibroblasts, neurons, and hepatocytes, highlighting the fundamental importance of arginine-sensing to mTORC1 signaling. Together, our data provide evidence that different growth promoting cues cooperate to a greater extent than previously recognized to achieve tight spatial and temporal regulation of mTORC1 signaling.


Cells need to be able to sense and respond to signals from their environment. A group (or complex) of conserved proteins called mTORC1 acts a key signaling hub that regulates cell growth and many other processes. This complex can be activated by many different signals from outside the cell. However, mTORC1 can only be activated by these signals if there is also a good supply of amino acids ­ which are needed to make new proteins ­ within the cell. The amino acids are thought to be presented to mTORC1 on the outer surface of cellular compartments known as lysosomes. A protein called Rheb on the surface of the lysosomes activates mTORC1, while a protein complex called TSC inhibits the activity of Rheb to regulate mTORC1 activity. Previous studies have shown that some amino acids influence whether mTORC1 can be activated by affecting whether it is localized to the lysosomes or not. Here, Carroll et al. explored how an amino acid called arginine regulates mTORC1. The experiments show that arginine is the major amino acid that influences whether mTORC1 can be activated in several different types of human cell. When cells were deprived of arginine, the activity of the complex was strongly suppressed. However, microscopy showed that arginine had no effect on whether mTORC1 was found at the lysosomes or not, which suggests that arginine might be acting in a different way to other amino acids. Further experiments found that a lack of arginine led to an increase in the number of TSC complexes at the lysosomes. This led to the inhibition of Rheb and therefore prevented mTORC1 from being activated. Together, Carroll et al.'s findings provide evidence that the different signals that regulate mTORC1 signaling cooperate to a greater extent than previously thought. A future challenge will be to understand the molecular details of how the arginine is detected.


Assuntos
Arginina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteína 2 do Complexo Esclerose Tuberosa
6.
Proc Natl Acad Sci U S A ; 112(31): E4281-7, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195741

RESUMO

Studies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway. We demonstrate that BRD5631 affects several cellular disease phenotypes previously linked to autophagy, including protein aggregation, cell survival, bacterial replication, and inflammatory cytokine production. BRD5631 can serve as a valuable tool for studying the role of autophagy in the context of cellular homeostasis and disease.


Assuntos
Autofagia/efeitos dos fármacos , Genética Médica , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Agregação Celular/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , Peptídeos/metabolismo , Fenótipo , Bibliotecas de Moléculas Pequenas/química
7.
Cell Stem Cell ; 15(4): 471-487, 2014 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-25090446

RESUMO

Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, "naive" state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Sobrevivência Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dados de Sequência Molecular , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transgenes
8.
Autophagy ; 10(6): 1137-40, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24879158

RESUMO

Autophagy is essential for cellular homeostasis and its dysfunction in human diseases has been implicated in the accumulation of misfolded protein and in cellular toxicity. We have recently shown impairment in autophagic flux in the lipid storage disorder, Niemann-Pick type C1 (NPC1) disease associated with abnormal cholesterol sequestration, where maturation of autophagosomes is impaired due to defective amphisome formation caused by failure in SNARE machinery. Abrogation of autophagy also causes cholesterol accumulation, suggesting that defective autophagic flux in NPC1 disease may act as a primary causative factor not only by imparting its deleterious effects, but also by increasing cholesterol load. However, cholesterol depletion treatment with HP-ß-cyclodextrin impedes autophagy, whereas pharmacologically stimulating autophagy restores its function independent of amphisome formation. Of potential therapeutic relevance is that a low dose of HP-ß-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may rescue both the cholesterol and autophagy defects in NPC1 disease.


Assuntos
Autofagia/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/patologia , beta-Ciclodextrinas/uso terapêutico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Proteínas SNARE/metabolismo
9.
Stem Cell Reports ; 2(6): 866-80, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24936472

RESUMO

Niemann-Pick type C (NPC) disease is a fatal inherited lipid storage disorder causing severe neurodegeneration and liver dysfunction with only limited treatment options for patients. Loss of NPC1 function causes defects in cholesterol metabolism and has recently been implicated in deregulation of autophagy. Here, we report the generation of isogenic pairs of NPC patient-specific induced pluripotent stem cells (iPSCs) using transcription activator-like effector nucleases (TALENs). We observed decreased cell viability, cholesterol accumulation, and dysfunctional autophagic flux in NPC1-deficient human hepatic and neural cells. Genetic correction of a disease-causing mutation rescued these defects and directly linked NPC1 protein function to impaired cholesterol metabolism and autophagy. Screening for autophagy-inducing compounds in disease-affected human cells showed cell type specificity. Carbamazepine was found to be cytoprotective and effective in restoring the autophagy defects in both NPC1-deficient hepatic and neuronal cells and therefore may be a promising treatment option with overall benefit for NPC disease.


Assuntos
Autofagia/fisiologia , Colesterol/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Adulto , Células Cultivadas , Criança , Pré-Escolar , Hepatócitos/citologia , Humanos , Neurônios/citologia
12.
Cell Rep ; 5(5): 1302-15, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24290752

RESUMO

Autophagy dysfunction has been implicated in misfolded protein accumulation and cellular toxicity in several diseases. Whether alterations in autophagy also contribute to the pathology of lipid-storage disorders is not clear. Here, we show defective autophagy in Niemann-Pick type C1 (NPC1) disease associated with cholesterol accumulation, where the maturation of autophagosomes is impaired because of defective amphisome formation caused by failure in SNARE machinery, whereas the lysosomal proteolytic function remains unaffected. Expression of functional NPC1 protein rescues this defect. Inhibition of autophagy also causes cholesterol accumulation. Compromised autophagy was seen in disease-affected organs of Npc1 mutant mice. Of potential therapeutic relevance is that HP-ß-cyclodextrin, which is used for cholesterol-depletion treatment, impedes autophagy, whereas stimulating autophagy restores its function independent of amphisome formation. Our data suggest that a low dose of HP-ß-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may provide a rational treatment strategy for NPC1 disease.


Assuntos
Autofagia , Glicoproteínas de Membrana/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Células Cultivadas , Colesterol/deficiência , Colesterol/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Ratos , Proteínas SNARE/metabolismo , beta-Ciclodextrinas/farmacologia
14.
BMC Cancer ; 9: 402, 2009 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19925656

RESUMO

BACKGROUND: Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein, which is frequently over-expressed in simple epithelia, progenitors, embryonic and tissue stem cells, carcinoma and cancer-initiating cells. Besides functioning as a homophilic adhesion protein, EpCAM is an oncogenic receptor that requires regulated intramembrane proteolysis for activation of its signal transduction capacity. Upon cleavage, the extracellular domain EpEX is released as a soluble ligand while the intracellular domain EpICD translocates into the cytoplasm and eventually into the nucleus in combination with four-and-a-half LIM domains protein 2 (FHL2) and beta-catenin, and drives cell proliferation. METHODS: EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were investigated under varying density conditions using confocal laser scanning microscopy, immunoblotting, cell counting, and conditional cell systems. RESULTS: EpCAM cleavage, induction of the target genes, and transmission of proliferation signals were dependent on adequate cell-to-cell contact. If cell-to-cell contact was prohibited EpCAM did not provide growth advantages. If cells were allowed to undergo contact to each other, EpCAM transmitted proliferation signals based on signal transduction-related cleavage processes. Accordingly, the pre-cleaved version EpICD was not dependent on cell-to-cell contact in order to induce c-myc and cell proliferation, but necessitated nuclear translocation. For the case of contact-inhibited cells, although cleavage of EpCAM occurred, nuclear translocation of EpICD was reduced, as were EpCAM effects. CONCLUSION: Activation of EpCAM's cleavage and oncogenic capacity is dependent on cellular interaction (juxtacrine) to provide for initial signals of regulated intramembrane proteolysis, which then support signalling via soluble EpEX (paracrine).


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Comunicação Celular/fisiologia , Transdução de Sinais/fisiologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Molécula de Adesão da Célula Epitelial , Humanos , Imunoprecipitação , Microscopia Confocal , Transporte Proteico
15.
Nat Cell Biol ; 11(2): 162-71, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19136966

RESUMO

EpCAM was found to be overexpressed on epithelial progenitors, carcinomas and cancer-initiating cells. The role of EpCAM in proliferation, and its association with cancer is poorly explained by proposed cell adhesion functions. Here we show that regulated intramembrane proteolysis activates EpCAM as a mitogenic signal transducer in vitro and in vivo. This involves shedding of its ectodomain EpEX and nuclear translocation of its intracellular domain EpICD. Cleavage of EpCAM is sequentially catalysed by TACE and presenilin-2. Pharmacological inhibition or genetic silencing of either protease impairs growth-promoting signalling by EpCAM, which is compensated for by EpICD. Released EpICD associates with FHL2, beta-catenin and Lef-1 to form a nuclear complex that contacts DNA at Lef-1 consensus sites, induces gene transcription and is oncogenic in immunodeficient mice. In patients, EpICD was found in nuclei of colon carcinoma but not of normal tissue. Nuclear signalling of EpCAM explains how EpCAM functions in cell proliferation.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Mitose/fisiologia , Transdução de Sinais/fisiologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Antígenos de Neoplasias/genética , Carcinoma/genética , Carcinoma/metabolismo , Moléculas de Adesão Celular/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Molécula de Adesão da Célula Epitelial , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas com Homeodomínio LIM , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Células NIH 3T3 , Presenilina-2/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
16.
Parasitol Res ; 95(1): 5-12, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15549390

RESUMO

From March to October 2003, a total of 2,518 host-seeking Ixodes ricinus ticks (1,944 nymphs, 264 females, 310 males) were collected by blanket dragging at 45 sites all over the city area of Bonn, western Germany, to be checked for Borrelia burgdorferi infection. The collection sites included 20 private gardens, nine public recreational parks, the boundaries of 14 sylvatic suburban areas and two footpaths between suburban farmed fields. Generally, numbers of specimens collected along sylvatic suburban areas and at urban sites with dense tree populations were significantly higher than at the other collection sites. Out of 1,394 specimens (865 nymphs, 241 females, 288 males) that were randomly chosen for Borrelia analysis by a simple PCR, 250 (17.9 %) were found to be infected with B. burgdorferi sensu lato. While the infection prevalences varied significantly between females (26.6%), males (12.5%) and nymphs (17.3%), there were no striking differences between sylvatic and unwooded sites. A total of 92.8% of the ticks Borrelia-positive by the simple PCR were also positive in a diagnostic nested PCR. Using genospecies-specific oligonucleotide probes, single Borrelia genospecies infections (91.4%) could be assigned to B. afzelii (39.5%), B. garinii (27.9%), B. burgdorferi sensu stricto (15.6%) and B. valaisiana (8.6%) by DNA hybridization. Various combinations of double infections were observed in 4.3% of the infected ticks. Another 4.3% of the Borrelia infections were untypeable. The B. burgdorferi genospecies distribution in the city area was shown to be variable from site to site and, even more, it was distinct from rural collection sites near Bonn. This is ascribed to a different spectrum of reservoir hosts. Taking into account the infection prevalences of host-seeking ticks in the forested surroundings of Bonn, our study demonstrates that the risk of acquiring Lyme disease after a tick bite in urban/suburban areas is comparably as high as in woodlands outside of the city.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi/isolamento & purificação , Ixodes/microbiologia , Animais , Borrelia burgdorferi/genética , DNA Bacteriano , Ecossistema , Alemanha/epidemiologia , Humanos , Doença de Lyme/epidemiologia , Ninfa/microbiologia , Reação em Cadeia da Polimerase , População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...