Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cannabis Cannabinoid Res ; 9(2): 464-469, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252548

RESUMO

Introduction: Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB), has killed nearly one billion people during the last two centuries. Nowadays, TB remains a major global health problem ranked among the top 10 causes of death worldwide. One of the main challenges in developing new strategies to fight TB is focused on reducing the duration and complexity of drug regimens. Cannabidiol (CBD) is the main nonpsychoactive ingredient extracted from the Cannabis sativa L. plant, which has been shown to be biologically active against bacteria. The purpose of this work was to investigate the antimicrobial effect of CBD on M. tuberculosis intracellular infection. Materials and Methods: To assess the minimum inhibitory concentration (MIC) of CBD on mycobacterial strains, the MTT assay was performed on Mycobacterium smegmatis, and the Colony-Forming Unit (CFU) assay was conducted on MtbH37Rv. Additionally, the cytotoxic effect of CBD on THP-1 cells was assessed by MTT assay. Moreover, macrophages derived from the THP-1 cell were infected with MtbH37Rv (multiplicity of infection 1:10) to evaluate the intracellular activity of CBD by determining the CFU/mL. Results: Antimicrobial activity against M. smegmatis (MIC=100 µM) and MtbH37Rv (MIC=25 µM) cultures was exhibited by CBD. Furthermore, the effect of CBD was also evaluated on MtbH37Rv infected macrophage cells. Interestingly, a reduction in viable intracellular MtbH37Rv bacteria was observed after 24 h of treatment. Moreover, CBD exhibited a safe profile toward human THP-1 cells, since it showed no toxicity (CC50=1075 µM) at a concentration of antibacterial effect (selectivity index 43). Conclusion: These results extend the knowledge regarding the antimicrobial activity of CBD and demonstrate its ability to kill the human intracellular pathogen M. tuberculosis.


Assuntos
Canabidiol , Mycobacterium tuberculosis , Tuberculose , Humanos , Canabidiol/farmacologia , Tuberculose/terapia , Antibacterianos/farmacologia , Macrófagos
2.
mBio ; 12(5): e0183621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34579567

RESUMO

The emergence and worldwide dissemination of carbapenemase-producing Gram-negative bacteria are a major public health threat. Metallo-ß-lactamases (MBLs) represent the largest family of carbapenemases. Regrettably, these resistance determinants are spreading worldwide. Among them, the New Delhi metallo-ß-lactamase (NDM-1) is experiencing the fastest and largest geographical spread. NDM-1 ß-lactamase is anchored to the bacterial outer membrane, while most MBLs are soluble, periplasmic enzymes. This unique cellular localization favors the selective secretion of active NDM-1 into outer membrane vesicles (OMVs). Here, we advance the idea that NDM-containing vesicles serve as vehicles for the local dissemination of NDM-1. We show that OMVs with NDM-1 can protect a carbapenem-susceptible strain of Escherichia coli upon treatment with meropenem in a Galleria mellonella infection model. Survival curves of G. mellonella revealed that vesicle encapsulation enhances the action of NDM-1, prolonging and favoring bacterial protection against meropenem inside the larva hemolymph. We also demonstrate that E. coli cells expressing NDM-1 protect a susceptible Pseudomonas aeruginosa strain within the larvae in the presence of meropenem. By using E. coli variants engineered to secrete variable amounts of NDM-1, we demonstrate that the protective effect correlates with the amount of NDM-1 secreted into vesicles. We conclude that secretion of NDM-1 into OMVs contributes to the survival of otherwise susceptible nearby bacteria at infection sites. These results disclose that OMVs play a role in the establishment of bacterial communities, in addition to traditional horizontal gene transfer mechanisms. IMPORTANCE Resistance to carbapenems, last-resort antibiotics, is spreading worldwide, raising great concern. NDM-1 is one of the most potent and widely disseminated carbapenem-hydrolyzing enzymes spread among many bacteria and is secreted to the extracellular medium within outer membrane vesicles. We show that vesicles carrying NDM-1 can protect carbapenem-susceptible strains of E. coli and P. aeruginosa upon treatment with meropenem in a live infection model. These vesicles act as nanoparticles that encapsulate and transport NDM-1, prolonging and favoring its action against meropenem inside a living organism. Secretion of NDM-1 into vesicles contributes to the survival of otherwise susceptible nearby bacteria at infection sites. We propose that vesicles play a role in the establishment of bacterial communities and the dissemination of antibiotic resistance, in addition to traditional horizontal gene transfer mechanisms.


Assuntos
Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Membrana Externa Bacteriana , Proteínas de Bactérias , Carbapenêmicos , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Proteínas de Escherichia coli , Transferência Genética Horizontal , Humanos , Meropeném , Testes de Sensibilidade Microbiana , Mariposas , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases/genética
3.
Peptides ; 142: 170570, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34000327

RESUMO

Viruses remain one of the leading causes of animal and human disease. Some animal viral infections spread sporadically to human populations, posing a serious health risk. Particularly the emerging viral zoonotic diseases such as the novel, zoonotic coronavirus represent an actual challenge for the scientific and medical community. Besides human health risks, some animal viral infections, although still not zoonotic, represent important economic loses to the livestock industry. Viral infections pose a genuine concern for which there has been an increasing interest for new antiviral molecules. Among these novel compounds, antiviral peptides have been proposed as promising therapeutic options, not only for the growing body of evidence showing hopeful results but also due to the many adverse effects of chemical-based drugs. Here we review the current progress, key targets and considerations for the development of antiviral peptides (AVPs). The review summarizes the state of the art of the AVPs tested in zoonotic (coronaviruses, Rift Valley fever viruses, Eastern Equine Encephalitis Virus, Dengue and Junín virus) and also non-zoonotic farm animal viruses (avian and cattle viruses). Their molecular target, amino acid sequence and mechanism of action are summarized and reviewed. Antiviral peptides are currently on the cutting edge since they have been reported to display anti-coronavirus activity. Particularly, the review will discuss the specific mode of action of AVPs that specifically inhibit the fusion of viral and host-cell membranes for SARS-CoV-2, showing in detail some important features of the fusion inhibiting peptides that target the spike protein of these risky viruses.


Assuntos
Peptídeos/farmacologia , Zoonoses Virais/tratamento farmacológico , Vírus/efeitos dos fármacos , Animais , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Encefalite Equina do Leste/efeitos dos fármacos , Humanos , Vírus Junin/efeitos dos fármacos , Vírus da Febre do Vale do Rift/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos
4.
Arch Biochem Biophys ; 693: 108549, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32828795

RESUMO

In the last years, the decreasing effectiveness of conventional antimicrobial-drugs has caused serious problems due to the rapid emergence of multidrug-resistant pathogens. This situation has brought attention to other antimicrobial agents like antimicrobial peptides (AMPs), for being considered an alternative to conventional drugs. These compounds target bacterial membranes for their activity, which gives them a broad spectrum of action and less probable resistance development. That is why the peptide-membrane interaction is a crucial aspect to consider in the study of AMPs. The aim of this work was the characterization of the "de novo" designed peptide P1, studying its interactions with model membranes (i.e. liposomes of DMPC:DMPG 5:1) in order to evaluate the final position of the peptide upon interacting with the membrane. Also, we tested the effects of the peptide in gram-positive and gram-negative bacteria. Later, by spectroscopic methods, the ability of the peptide to permeabilize the inner and outer membrane of E. coli and plasmatic membrane of S. aureus was assessed. The results obtained confirmed that P1 can disrupt both membranes, showing some difference in its activity as a function of the nature of each bacterial cell wall, confirming higher effects on gram-positive S. aureus. Finally, we also showed the ability of P1 to inhibit biofilms of that gram-positive bacterium. All data obtained in this work allowed us to propose a model, where the first interactions of the peptide with the bacterial envelope, seem to depend on the gram-negative and gram-positive cell wall structure. After that first interaction, the peptide is stabilized by Trp residues depth inserted into the hydrocarbon region, promoting several changes in the organization of the lipid bilayer, following a carpet-like mechanism, which results in permeabilization of the membrane, triggering the antimicrobial activity.


Assuntos
Proteínas de Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Membranas Artificiais , Antibacterianos/farmacologia , Biofilmes , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Cinética , Testes de Sensibilidade Microbiana , Permeabilidade
5.
Biochim Biophys Acta Biomembr ; 1862(11): 183443, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810490

RESUMO

Antimicrobial peptides are small molecules that display antimicrobial activity against a wide range of pathogens. In a previous work, by using model membranes we studied P6, a peptide that shows no antimicrobial activity, and P6.2, which exhibits antibacterial activity. In the present work we aimed to unravel the mode of action of these peptides by studying their interaction in vivo with Escherichia coli and Staphylococcus aureus. In this sense, to study the interactions with bacterial cells and their effect on the bacterial surface, zeta potential, spectroscopic, and microscopic methodologies were applied. P6.2 exhibits a higher affinity toward both bacterial envelopes. The ability of both peptides to disrupt afterwards the bacterial membrane was also studied. Both peptides were able to induce bacterial membrane damage, but higher concentrations of P6 were needed to obtain results comparable to those obtained for P6.2. Additionally, P6.2 exhibited faster damage kinetics. Altogether, these data allow postulating, in a physiologic model, that the lower affinity of P6 for bacterial envelope results in a minor final concentration of the peptide in the bacterial membrane unable to trigger the antimicrobial activity. Finally, the fact that the active P6.2 has the same MIC value for the Gram-positive and Gram-negative bacteria tested, but not the same profile in the permeabilization assays, reinforces the question of whether cell wall components act as electrostatic barriers preventing or minimizing membrane-active AMPs lethal action at the membrane level.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Membrana Celular , Escherichia coli/metabolismo , Modelos Químicos , Staphylococcus aureus/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo
6.
Eur Biophys J ; 49(3-4): 307-313, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32394101

RESUMO

Colistin is a polymyxin antibiotic (polymyxin E) that has in recent years re-emerged as an option for treatment of multidrug-resistant bacteria. Recently, the re-introduction of colistin resulted in the appearance of colistin-resistant bacteria, which is usually caused by LPS modifications. The fact that this modification is mediated by a plasmid carrying the mcr-1 gene, implies a horizontal transfer of colistin resistance. In Argentina, the National Reference Laboratory in Antimicrobial Resistance (NRLAR), has recently screened several bacteria for the MCR-1 plasmid, detecting nine Escherichia coli isolates carrying the plasmid with the mcr-1 gene, among others. In this context, we proposed to assess the effect of surface charge modifications induced by the plasmid MCR-1 and its impact on the resulting colistin resistance in two clinical isolates of colistin-resistant E. coli. Using zeta potential assays, we confirmed the reduction of negative charge exposure on clinical isolates compared to the reference strain of E. coli. In addition, through permeabilization assays, we were able to correlate this reduction in charge exposure with the extent of damage to the bacterial membrane. The fact that this surface charge modification through substitution of lipid A is plasmid encoded, represents an important concern for future antimicrobial peptide drug development.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Argentina , Permeabilidade da Membrana Celular , Escherichia coli/citologia , Humanos
7.
Microb Pathog ; 139: 103886, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31778756

RESUMO

Cationic antimicrobial peptides (AMPs) are short linear amino acid sequences, which display antimicrobial activity against a wide range of bacterial species. They are promising novel antimicrobials since they have shown bactericidal effects against multiresistant bacteria. Their amphiphilic structure with hydrophobic and cationic regions drives their interaction with anionic bacterial cytoplasmic membranes, which leads to their disruption. In this work two synthetic designed AMPs, P5 and P6.2, which have been previously analyzed in their ability to interact with bacterial or eukaryotic membranes, were evaluated in their anti-biofilm and in vivo antibacterial activity. In a first step, a time-kill kinetic assay against P. aeruginosa and S. aureus and a curve for hemolytic activity were performed in order to determine the killing rate and the possible undesirable toxic effect, respectively, for both peptides. The biofilm inhibitory activity was quantified at sub MIC concentrations of the peptides and the results showed that P5 displayed antibiofilm activity on both strains while P6.2 only on S. aureus. Scanning electron microscopy (SEM) of bacteria treated with peptides at their MIC revealed protruding blisters on Gam-negative P. aeruginosa strain, but almost no visible surface alteration on Gram-positive S. aureus. These micrographs highlighted different manifestations of the membrane-disrupting activity that these kinds of peptides possess. Finally, both peptides were analyzed in vivo, in the lungs of neutropenic mice previously instilled with P. aeruginosa. Mice lungs were surgically extracted and bacteria and pro-inflammatory cytokines (IL-ß, IL-6 and TNF-α) were quantified by colony forming units and ELISA, respectively. Results showed that instillation of the peptides produced a significant decrease in the number of living bacteria in the lungs, concomitant with a decrease in pro-inflammatory cytokines. Overall, the results presented here suggest that these two new peptides could be good candidates for future drug development for anti-biofilm and anti-infective therapy.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Aminoácidos/química , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Fenômenos Químicos , Relação Dose-Resposta a Droga , Feminino , Camundongos , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/ultraestrutura
8.
Mol Pharm ; 17(1): 70-83, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31617725

RESUMO

Azithromycin (AZ) is a broad-spectrum antibiotic with anti-inflammatory and antiquorum sensing activity against biofilm forming bacteria such as Pseudomonas aeruginosa. AZ administered by oral or parenteral routes, however, neither efficiently accesses nor remains in therapeutic doses inside pulmonary biofilm depths. Instead, inhaled nanocarriers loaded with AZ may revert the problem of low accessibility and permanence of AZ into biofilms, enhancing its antimicrobial activity. The first inhalable nanovesicle formulation of AZ, nanoarchaeosome-AZ (nanoARC-AZ), is here presented. NanoARC prepared with total polar archaeolipids (TPAs), rich in 2,3-di-O-phytanyl-sn-glycero-1-phospho-(3'-sn-glycerol-1'-methylphosphate) (PGP-Me) from Halorubrum tebenquichense archaebacteria, consisted of ∼180 nm-diameter nanovesicles, loaded with 0.28 w/w AZ/TPA. NanoARC-AZ displayed lower minimal inhibitory concentration and minimal bactericidal concentration, higher preformed biofilm disruptive, and anti-PAO1 activity in biofilms than AZ. NanoARC penetrated and disrupted the structure of the PAO1 biofilm within only 1 h. Two milliliters of 15 µg/mL AZ nanoARC-AZ nebulized for 5 min rendered AZ doses compatible with in vitro antibacterial activity. The strong association between AZ and the nanoARC bilayer, combined with electrostatic attraction and trapping into perpendicular methyl groups of archaeolipids, as determined by Laurdan fluorescence anisotropy, generalized polarization, and small-angle X-ray scattering, was critical to stabilize during storage and endure shear forces of nebulization. NanoARC-AZ was noncytotoxic on A549 cells and human THP-1-derived macrophages, deserving further preclinical exploration as enhancers of AZ anti-PAO1 activity.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Biofilmes/efeitos dos fármacos , Halorubrum/química , Nanocápsulas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Células A549 , Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Azitromicina/toxicidade , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células Epiteliais/efeitos dos fármacos , Humanos , Lipídeos/química , Lipossomos , Testes de Sensibilidade Microbiana , Mucinas/metabolismo , Nanocápsulas/ultraestrutura , Fosfolipídeos/química , Pseudomonas aeruginosa/enzimologia , Difração de Raios X
9.
Biochim Biophys Acta Biomembr ; 1861(7): 1329-1337, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31095945

RESUMO

In the search for new antimicrobial molecules, antimicrobial peptides (AMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to membrane disruption and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing research and clinical interest. The AMP P5 has been previously designed as a cationic linear α-helical sequence, being its antimicrobial and hemolytic properties also evaluated. In this work, we analyzed the feasibility of using P5 against a carbapenem-resistant clinical isolate of Pseudomonas aeruginosa, one of the most common and risky pathogens in clinical practice. After antimicrobial activity confirmation in in vitro studies, synergistic activity of P5 with meropenem was evaluated, showing that P5 displayed significant synergistic activity in a time kill curve assay. The ability of P5 to permeabilize the outer membrane of P. aeruginosa can explain the obtained results. Finally, the antibiofilm activity was investigated by viability analysis (MTT assay), crystal violet and confocal imaging, with P5 displaying mild biofilm inhibition in the range of concentrations tested. Regarding biofilm disruption activity, P5 showed a higher efficacy, interfering with biofilm structure and promoting bacterial cell death. Atomic force microscope images further demonstrated the peptide potential in P. aeruginosa biofilm eradication, confirming the promising application of P5 in multi-resistant infections therapeutics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Carbapenêmicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Farmacorresistência Bacteriana
10.
Front Chem ; 6: 204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922648

RESUMO

Antimicrobial peptides (AMPs) are promising novel antibiotics since they have shown antimicrobial activity against a wide range of bacterial species, including multiresistant bacteria; however, toxicity is the major barrier to convert antimicrobial peptides into active drugs. A profound and proper understanding of the complex interactions between these peptides and biological membranes using biophysical tools and model membranes seems to be a key factor in the race to develop a suitable antimicrobial peptide therapy for clinical use. In the search for such therapy, different combined approaches with conventional antibiotics have been evaluated in recent years and demonstrated to improve the therapeutic potential of AMPs. Some of these approaches have revealed promising additive or synergistic activity between AMPs and chemical antibiotics. This review will give an insight into the possibilities that physicochemical tools can give in the AMPs research and also address the state of the art on the current promising combined therapies between AMPs and conventional antibiotics, which appear to be a plausible future opportunity for AMPs treatment.

11.
Sci Rep ; 8(1): 5332, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593284

RESUMO

Secretory Leukocyte Proteinase Inhibitor (SLPI) is an antiinflammatory peptide that blocks the activity of serine proteases, primarily the neutrophil elastase. In an attempt to direct the activity of SLPI on inflamed sites, a chimera consisting of the transglutaminase II substrate domain of trappin 2 (cementoin), and the mature SLPI protein was constructed. Cell attachment and biological activity were compared between SLPI and this chimera. By using whole cell ELISA, fluorescence microscopy and flow cytometry assays we observed that the cementoin-SLPI fusion protein (FP) but not SLPI attached to a human lung epithelial cell line and monocytes. A maximum attachment was achieved 15 min after FP was added to the cell cultures. In an elastase activity assay, we observed that FP retained its antiprotease activity and that at equimolar amount of proteins, FP was more efficient than SLPI in the inhibition. Both, FP and SLPI inhibits IL-2-induced lymphocyte proliferation, however, lower amounts of FP were required to achieve this inhibition. Furthermore, FP binds to mycobacteria and maintained the bactericidal activity observed for SLPI. Overall, these results show that this new chimera is able to attach to the cell surfaces retaining and improving some biological activities described for SLPI.


Assuntos
Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Monócitos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Biomarcadores , Linhagem Celular , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Imunofluorescência , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Monócitos/efeitos dos fármacos , Peptídeos/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Inibidor Secretado de Peptidases Leucocitárias/genética , Inibidor Secretado de Peptidases Leucocitárias/farmacologia
12.
Pharmacopsychiatry ; 50(1): 14-18, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27414739

RESUMO

Introduction: The HTR2C gene is an important candidate in pharmacogenetic studies of antipsychotic-induced weight gain (AIWG). However, inconsistent results have been obtained. The present study investigated the association between -759C>T, functional polymorphism of the HTR2C receptor, and AIWG. Methods: A prospective cohort of 48 female inpatients with schizophrenia and related illness treated according to normal clinical practice with second generation antipsychotics (SGAs) risperidone, clozapine, quetiapine, and olanzapine were evaluated. Patients were weighted at admission and again at 6 weeks of hospitalization. Weight gain was defined as an increase≥7% of baseline weight. The association between polymorphisms HTR2C and weight gain was evaluated. Multiple logistic regression was run to determine potential confounders. Results: Patients with the T allele at position -759 (TT or CT) gained less weight as compared to patients who did not have the allele. This association was not affected by possible confounding factors such as age, baseline BMI, and prior psychopharmacological treatment. Discussion: The T allele at position -759 protects against AIWG in female patients with schizophrenia.


Assuntos
Antipsicóticos/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Receptor 5-HT2C de Serotonina/genética , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/genética , Adulto , Feminino , Testes Genéticos , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Esquizofrenia/tratamento farmacológico , Adulto Jovem
13.
Front Chem ; 5: 122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312928

RESUMO

Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

14.
Colloids Surf B Biointerfaces ; 141: 528-536, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26896660

RESUMO

Cationic antimicrobial peptides (CAMPs) represent important self defense molecules in many organisms, including humans. These peptides have a broad spectrum of activities, killing or neutralizing many Gram-negative and Gram-positive bacteria. The emergence of multidrug resistant microbes has stimulated research on the development of alternative antibiotics. In the search for new antibiotics, cationic antimicrobial peptides (CAMPs) offer a viable alternative to conventional antibiotics, as they physically disrupt the bacterial membranes, leading to lysis of microbial membranes and eventually cell death. In particular, the group of linear α-helical cationic peptides has attracted increasing interest from clinical as well as basic research during the last decade. In this work, we studied the biophysical and microbiological characteristics of three new designed CAMPs. We modified a previously studied CAMP sequence, in order to increase or diminish the hydrophobic face, changing the position of two lysines or replacing three leucines, respectively. These mutations modified the hydrophobic moment of the resulting peptides and allowed us to study the importance of this parameter in the membrane interactions of the peptides. The structural properties of the peptides were also correlated with their membrane-disruptive abilities, antimicrobial activities and hemolysis of human red blood cells.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/metabolismo , Hemólise , Sequência de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Membrana Celular/química , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/efeitos dos fármacos , Espectrometria de Fluorescência , Staphylococcus aureus/efeitos dos fármacos
15.
BMC Ophthalmol ; 15: 12, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25651862

RESUMO

BACKGROUND: To study the effect of topical administration of a fusion protein (PF-MC) made up of N-terminal portion of the protease inhibitor Trappin-2 (which is a substrate of transglutaminasa-2) and SLPI (protein with anti-inflammatory, anti-bacterial and anti-viral ability), in an animal model of corneal inflammation and angiogenesis. METHODS: An alkali injury was produced with a filter paper of 3 mm with 1 N NaOH during 40 seconds on the right cornea of 36 male Sprague Dawley rats, under general anesthesia. Animals were divided into three groups according to treatment. Group 1 was treated with 10 ul of PF-MC (200 ug/ml; n = 12), Group 2, with 10 ul of SLPI (200 ug/ml; n = 12) and Group 3 was treated with buffer (10 ul; n = 12) topically administered four times a day for up to 7 days. Half of the animals were sacrificed at day 3 before making a re-epithelialization time analysis with fluorescein staining at 18 and 24 hours. In the remaining animals corneal opacity was studied and digital photographs were taken at day 7 before doing euthanasia. Eyes were processed for histology and immunofluorescence. RESULTS: Corneal ulcerated area was significantly lower in PF-MC treated animals compared to SLPI and buffer-treated animals at 18 hours and 24 hours postinjury. A clear cornea and fundus red reflex was only found among PF-MC treated animals. Histological analysis revealed a stratified corneal epithelium with at least three layers in all PF-MC animals at day 7. In this group there was a reduced number of PMNs in the corneal stroma at 3 and 7 days of follow-up. Besides, corneal neovascularization was much more extended in SLPI and Buffer animals than in animals treated with PF-MC. CONCLUSIONS: The binding of SLPI with Cementoin to transglutaminase seems to be an effective strategy to treat corneal inflammation and angiogenesis.


Assuntos
Queimaduras Químicas/tratamento farmacológico , Neovascularização da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Proteínas de Ligação ao GTP/genética , Ceratite/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Inibidor Secretado de Peptidases Leucocitárias/genética , Transglutaminases/genética , Administração Tópica , Animais , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Contagem de Células , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Modelos Animais de Doenças , Epitélio Corneano/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Ceratite/metabolismo , Ceratite/patologia , Masculino , Proteína 2 Glutamina gama-Glutamiltransferase , Ratos , Ratos Sprague-Dawley , Reepitelização , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Eur J Med Chem ; 71: 31-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269514

RESUMO

Antibiotic resistance is one of the main problems concerning public health or clinical practice. Antimicrobial peptides appear as good candidates for the development of new therapeutic drugs. In this study we de novo designed a group of cationic antimicrobial peptides, analyzed its physicochemical properties, including its structure by circular dichroism and studied its antimicrobial properties against a panel of clinical isolates expressing different mechanisms of resistance. Three cationic alpha helical peptides exhibited antimicrobial activity comparable to, or even better than the comparator omiganan (MBI-226).


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Desenho de Fármacos , Sequência de Aminoácidos , Infecções Bacterianas/tratamento farmacológico , Dicroísmo Circular , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular
17.
J Cell Physiol ; 228(2): 469-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22767220

RESUMO

Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that was related to cancer development and metastasis dissemination on several types of tumors. However, it is not known the effect of SLPI on mammary and colon tumors. The aim of this study was to examine the effect of SLPI on mammary and colon tumor growth. The effect of SLPI was tested on in vitro cell apoptosis and in vivo tumor growth experiments. SLPI over-expressing human and murine mammary and colon tumor cells were generated by gene transfection. The administration of murine mammary tumor cells over-expressing high levels of SLPI did not develop tumors in mice. On the contrary, the administration of murine colon tumor cells over-expressing SLPI, developed faster tumors than control cells. Intratumoral, but not intraperitoneal administration of SLPI, delayed the growth of tumors and increased the survival of mammary but not colon tumor bearing mice. In vitro culture of mammary tumor cell lines treated with SLPI, and SLPI producer clones were more prone to apoptosis than control cells, mainly under serum deprivation culture conditions. Herein we demonstrated that SLPI induces the apoptosis of mammary tumor cells in vitro and decreases the mammary but not colon tumor growth in vivo. Therefore, SLPI may be a new potential therapeutic tool for certain tumors, such as mammary tumors.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias Mamárias Animais/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Feminino , Inativação Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Mamárias Animais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Inibidor Secretado de Peptidases Leucocitárias/farmacologia , Transfecção , Neoplasias do Colo do Útero/metabolismo
18.
Vertex ; 23(104): 299-309, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-23170302

RESUMO

Pharmacogenetics studies how genetic variation influences the response of patients to drugs. This discipline has a greater impact in those medical specialties that treat complex diseases in which the therapeutic response is insufficient and/or have high costs such as psychiatry. This is a narrative review in which we analyze the main results of pharmacogenetic studies performed with the most relevant groups of psychoactive drugs and discusses missing for incorporating these advances into our daily practice. We conclude that despite the remarkable progress in the field of Pharmacogenetics in the last 10 years, studies in psychiatry have been inconclusive and the clinical use of pharmacogenetic testing is still limited. However, there are some encouraging elements about the applicability of these tools for the improvement of psychiatric treatments.


Assuntos
Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/genética , Antidepressivos/uso terapêutico , Antipsicóticos/uso terapêutico , Humanos , Farmacogenética , Psiquiatria
19.
Immunology ; 133(4): 434-41, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21574992

RESUMO

Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [(3) H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4(+) lymphocyte proliferation but did not affect the proliferation of CD8(+) cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Leucócitos Mononucleares/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/análise , Humanos , Leucócitos Mononucleares/imunologia , Relação Estrutura-Atividade
20.
Am J Respir Crit Care Med ; 179(3): 247-53, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19011154

RESUMO

RATIONALE: Human secretory leukocyte protease inhibitor (SLPI) displays bactericidal activity against pathogens such as Escherichia coli and Streptococcus. Furthermore, it has been reported that murine SLPI shows potent antimycobacterial activity. OBJECTIVES: The aim of the present study was to investigate whether human recombinant SLPI not only kills mycobacteria but also acts as a pattern recognition receptor for the host immune system. METHODS: For the in vivo experiment, BALB/c mice were infected by intranasal instillation with Mycobacterium bovis BCG and viable BCG load in lung homogenates was later determined. For the in vitro experiments, SLPI was incubated overnight with a suspension of M. bovis BCG or the virulent strain Mycobacterium tuberculosis H37Rv, and the percentage survival as well as the binding of SLPI to mycobacteria was determined. Furthermore, bacteria phagocytosis was also determined by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Intranasal SLPI treatment decreased the number of colony-forming units recovered from lung homogenates, indicating that SLPI interfered with M. bovis BCG infection. Moreover, SLPI decreased the viability of both M. bovis BCG and H37Rv. We demonstrated that SLPI attached to the surface of the mycobacteria by binding to pathogen-associated molecular pattern mannan-capped lipoarabinomannans and phosphatidylinositol mannoside. Furthermore, we found that in the sputum of patients with tuberculosis, mycobacteria were coated with endogenous SLPI. Finally, we showed that phagocytosis of SLPI-coated mycobacteria was faster than that of uncoated bacteria. CONCLUSIONS: The present results demonstrate for the first time that human SLPI kills mycobacteria and is a new pattern recognition receptor for them.


Assuntos
Mycobacterium tuberculosis/fisiologia , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Tuberculose Pulmonar/metabolismo , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Escarro/química , Escarro/microbiologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...