Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662786

RESUMO

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


Assuntos
COVID-19 , Canais Epiteliais de Sódio , Furina , Camundongos Transgênicos , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Canais Epiteliais de Sódio/metabolismo , Animais , Humanos , Camundongos , Furina/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Células HEK293
2.
Am J Physiol Renal Physiol ; 326(2): F285-F299, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096266

RESUMO

Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.


Assuntos
Arginina Vasopressina , Proteínas Serina-Treonina Quinases , Camundongos , Humanos , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Células HEK293 , Arginina Vasopressina/metabolismo , Cotransportadores de K e Cl- , Desamino Arginina Vasopressina , Colforsina , Proteína Fosfatase 1/metabolismo , Rim/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
3.
Curr Opin Nephrol Hypertens ; 32(5): 476-481, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37530087

RESUMO

PURPOSE OF REVIEW: An increasing amount of evidence points out to a role for the thiazide-sensitive Na+:Cl- cotransporter, NCC, in the blood pressure alterations observed in conditions of pathologically high or pathologically low aldosterone. Here, we briefly review this evidence that is changing our perception of the pathophysiology of primary aldosteronism. RECENT FINDINGS: Although initially NCC was thought to be a direct target of aldosterone, more recent evidence suggests that NCC is only indirectly regulated by aldosterone, at least in a chronic setting. Aldosterone-induced changes in plasma K+ concentration that are prompted by the modulation of K+ secretion in principal cells of the connecting tubule and collecting duct are actually responsible for the modulation of NCC in conditions of altered aldosterone levels. A mounting amount of evidence suggests that this indirect effect of aldosterone on NCC may be key to produce the blood pressure alterations observed in aldosterone excess or aldosterone deficit. Finally, recent insights into the molecular pathways involved in NCC modulation by K+ are briefly reviewed. SUMMARY: The evidence reviewed here suggests that correction of K+ alterations in patients with hyper or hypoaldosteronism may substantially affect blood pressure levels. Mechanistically, this may be related to the K+-mediated modulation of NCC.


Assuntos
Hiperaldosteronismo , Hipertensão , Humanos , Aldosterona/metabolismo , Fosforilação , Hipertensão/etiologia , Hipertensão/metabolismo , Pressão Sanguínea , Hiperaldosteronismo/complicações , Hiperaldosteronismo/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Túbulos Renais Distais/metabolismo
4.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870644

RESUMO

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Assuntos
Hipopotassemia , Simportadores de Cloreto de Sódio , Animais , Humanos , Camundongos , Cloretos/metabolismo , Células HEK293 , Hipopotassemia/genética , Hipopotassemia/metabolismo , Túbulos Renais Distais/metabolismo , Fosforilação , Potássio/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/genética , Simportadores de Cloreto de Sódio/metabolismo
5.
EMBO Rep ; 22(5): e50766, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749979

RESUMO

SIRT7 is a NAD+ -dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively. Here, we find that protein levels and activity of heterologously expressed KCC4 are significantly modulated depending on its acetylation status in Xenopus laevis oocytes. Moreover, SIRT7 interacts with KCC4 in a NAD+ -dependent manner and increases its stability and activity in HEK293 cells. Interestingly, metabolic acidosis increases SIRT7 expression in kidney, as occurs with KCC4. In contrast, total SIRT7-deficient mice present lower KCC4 expression and an exacerbated metabolic acidosis than wild-type mice during an ammonium chloride challenge. Altogether, our data suggest that SIRT7 interacts with, stabilizes and modulates KCC4 activity through deacetylation, and reveals a novel role for SIRT7 in renal physiology.


Assuntos
Sirtuínas , Simportadores , Acetilação , Animais , Células HEK293 , Humanos , Rim , Camundongos , Sirtuínas/genética , Sirtuínas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Cotransportadores de K e Cl-
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...