Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889267

RESUMO

This study aimed to evaluate the antibacterial activity in vitro of Salpianthus macrodontus and Azadirachta indica extracts against potentially pathogenic bacteria for Pacific white shrimp. Furthermore, the extracts with higher inhibitory activity were analyzed to identify compounds responsible for bacterial inhibition and evaluate their effect on motility and biofilm formation. S. macrodontus and A. indica extracts were prepared using methanol, acetone, and hexane by ultrasound. The minimum inhibitory concentration (MIC) of the extracts was determined against Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae and P. leiognathi. The polyphenol profile of those extracts showing the highest bacterial inhibition were determined. Besides, the bacterial swimming and swarming motility and biofilm formation were determined. The highest inhibitory activity against the four pathogens was found with the acetonic extract of S. macrodontus leaf (MIC of 50 mg/mL for Vibrio spp. and 25 mg/mL for Photobacterium spp.) and the methanol extract of S. macrodontus flower (MIC of 50 mg/mL for all pathogens tested). Both extracts affected the swarming and swimming motility and the biofilm formation of the tested bacteria. The main phenolic compounds related to Vibrio bacteria inhibition were naringin, vanillic acid, and rosmarinic acid, whilst hesperidin, kaempferol pentosyl-rutinoside, and rhamnetin were related to Photobacterium bacteria inhibition.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Antibacterianos/farmacologia , Metanol , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
2.
Animals (Basel) ; 12(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35739864

RESUMO

This study aims to evaluate a Pacific white shrimp and Nile tilapia integrated system using biofloc technology with or without the addition of the microalgae Scenedesmus obliquus and with or without fish feed supplementation in a two-factor 62-day experiment. The shrimp (2.16 ± 0.01 g) were reared under a density of 400 shrimp m−3 and the fish (1.53 ± 0.12 g) were reared under a density of 522 fish m−3. The microalgae was added to the culture water two times a week. Growth performance, sludge production, and water microbiology were evaluated. Fish feed and the microalgae addition improved fish final biomass in 58% and 14%, respectively (p < 0.05). Fish survival was significantly higher when microalgae was added (93.9 ± 1.8%) compared with the treatments without microalgae addition (86.2 ± 7.6%) (p < 0.05). The yield of the overall system was higher in the treatments with fish feed supplementation (4.2 ± 0.2 kg m−3) compared with no addition (3.9 ± 0.2 kg m−3) (p < 0.05). These results suggest that fish feed supplementation at the rate of 1% of the biomass and microalgae inoculation can improve fish growth performance and system yield, without affecting sludge production and water microbiology. This work is an expansion of a conference paper with the same title.

3.
Plants (Basel) ; 11(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270049

RESUMO

Soursop leaves are a source of phytochemical compounds, such as phenolic acids, flavonoids, hydrolyzable tannins, and acetogenins. These compounds can have several types of biological activities. Lactic acid bacteria can uptake phenolic compounds present in plants or fruits. The aim of the present work was to investigate the in vitro effect of hexane, acetone, methanolic, and aqueous extracts of soursop leaves (Annona muricata L.) on the growth, motility, and biofilm formation of Lactobacillus casei, and to determine compounds related to growth. The minimum concentration promoting growth, motility (swimming, swarming, and twitching), and biofilm-forming capacity (crystal violet) were evaluated. The results showed the growth-promoting capacity of acetone and aqueous extracts at low doses 25-50 mg/L, and an inhibition in the four extracts at higher doses of 100 mg/L. The L. casei growth is related to ellagic acid, quercetin rhamnoside, kaempferol dihexoside, quercetin hexoside, secoisolariciresinol, and kaempferol hexoside-rhamnoside. Hexane extract increased the three types of motility, while aqueous maintained swimming and twitching motility similar to control. The four extracts inhibited the biofilm formation capacity.

4.
Arch Microbiol ; 202(9): 2379-2390, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32588083

RESUMO

In the aquaculture industry, the selection and quality of feed are highly relevant because their integrity and management have an impact on the health and development of organisms. In general, feeds contamination depends on storage conditions and formulation. Furthermore, it has been recognized that filamentous fungi are among the most important contaminating agent in formulated feeds. Therefore, the purpose of this research was to identify saprophytic fungi capable of proliferating in commercial feeds, as well as determining their prevalence, extracellular enzymes profile, ability to assimilate carbon sources, and finally their ability to produce aflatoxins. In order to do that, twenty-two fungi were isolated from commercial fish feeds. After, the species Aspergillus chevalieri, A. cristatus, A. sydowii, A. versicolor, A. flavus, A. creber, and Lichtheimia ramosa were identified. These fungi were able to produce extracellular enzymes, such as phosphatases, esterases, proteases, ß-glucosidase, and N-acetyl-ß-glucosaminidase. The isolated fungi showed no selective behavior in the assimilation of the different carbon sources, showing a strong metabolic diversity. Prevalence percentages above 85% were recorded. Among all fungi studied, A. flavus M3-C1 had the highest production of aflatoxins when this strain was inoculated directly in the feeds (295 ppb). The aflatoxin production by this strain under the experimental setting is above the permitted levels, and it has been established that high levels of aflatoxins in feeds can cause alterations in fish growth as well as the development of cancerous tumors in the liver, in addition to enhancing mortality.


Assuntos
Aflatoxinas/análise , Ração Animal/microbiologia , Fungos/classificação , Fungos/crescimento & desenvolvimento , Animais , Organismos Aquáticos , Proliferação de Células , Peixes , Fungos/isolamento & purificação , Fungos/patogenicidade
5.
PeerJ ; 6: e4459, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527414

RESUMO

Two experimental feeding trials were conducted during four weeks to evaluate the use of Ulva lactuca in shrimp culture: (1) for wastewater bioremediation, and (2) using different inclusion levels of U. lactuca meal in shrimp feed. In feeding trial 1, shrimp reared under seaweed U. lactuca water exchange in a re-circulation system (SWE) resulted in similar growth and feed utilization as shrimp reared with clean water exchange (CWE). Shrimp under no water exchange (NWE) resulted in significant lower growth and higher feed conversion rate (FCR) compared to the other treatments (p < 0.05). Nitrogen compounds and phosphate in water from SWE and CWE treatments did not present significant differences during the experimental trial (p > 0.05). In feeding trial 2, U. lactuca biomass produced by wastewater bioremediation in SWE treatment were dried and ground to formulate diets containing 0, 1, 2, and 3% U. lactuca meal (0UL, 1UL, 2UL, and 3UL). Shrimp fed the 3 UL diet resulted in a significant (p < 0.05) improvement of growth and FCR, and enhanced whole shrimp lipid and carotenoid content by 30 and 60%, respectively, compared to control diet. Seaweed U. lactuca is suggested as a desirable species for wastewater bioremediation in integrated aquaculture systems, and its meal as a good feed additive for farmed shrimp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...