Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2341141, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38597241

RESUMO

The Natal multimammate mouse (Mastomys natalensis) is the host of Lassa mammarenavirus, causing Lassa haemorrhagic fever in West Africa. As there is currently no operational vaccine and therapeutic drugs are limited, we explored rodent control as an alternative to prevent Lassa virus spillover in Upper Guinea, where the disease is highly endemic in rural areas. In a seven-year experiment, we distributed rodenticides for 10-30 days once a year and, in the last year, added intensive snap trapping for three months in all the houses of one village. We also captured rodents both before and after the intervention period to assess their effectiveness by examining alterations in trapping success and infection rates (Lassa virus RNA and IgG antibodies). We found that both interventions reduced the rodent population by 74-92% but swiftly rebounded to pre-treatment levels, even already six months after the last snap-trapping control. Furthermore, while we observed that chemical control modestly decreased Lassa virus infection rates annually (a reduction of 5% in seroprevalence per year), the intensive trapping unexpectedly led to a significantly higher infection rate (from a seroprevalence of 28% before to 67% after snap trapping control). After seven years, we conclude that annual chemical control, alone or with intensive trapping, is ineffective and sometimes counterproductive in preventing Lassa virus spillover in rural villages. These unexpected findings may result from density-dependent breeding compensation following culling and the survival of a small percentage of chronically infected rodents that may spread the virus to a new susceptible generation of mice.


Assuntos
Febre Lassa , Vírus Lassa , Camundongos , Animais , Vírus Lassa/genética , Guiné/epidemiologia , Controle de Roedores , Estudos Soroepidemiológicos , Reservatórios de Doenças , Febre Lassa/epidemiologia , Febre Lassa/prevenção & controle , Murinae , África Ocidental/epidemiologia
2.
Emerg Microbes Infect ; 13(1): 2290834, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38047354

RESUMO

The spread of Lassa virus (LASV) in Guinea, Liberia and Sierra Leone, which together are named the Mano River Union (MRU) area, was examined phylogeographically. To provide a reliable evolutionary scenario, new rodent-derived, whole LASV sequences were included. These were generated by metatranscriptomic next-generation sequencing from rodents sampled between 2003 and 2020 in 21 localities of Guinea and Sierra Leone. An analysis was performed using BEAST to perform continuous phylogeographic inference and EvoLaps v36 to visualize spatio-temporal spread. LASV was identified as expected in its primary host reservoir, the Natal multimammate mouse (Mastomys natalensis), and also in two Guinean multimammate mice (Mastomys erythroleucus) in northern Sierra Leone and two rusty-bellied brush-furred mice (Lophuromys sikapusi) in southern Sierra Leone. This finding is consistent with the latter two species being secondary host reservoirs. The strains in these three species were very closely related in LASV lineage IV. Phylogenetic analysis indicated that the most recent common ancestor of lineage IV existed 316-374 years ago and revealed distinct, well-supported clades from Sierra Leone (Bo, Kabala and Kenema), Guinea (Faranah, Kissidougou-Guekedou and Macenta) and Liberia (Phebe-Ganta). The phylogeographic scenario suggests southern Guinea as the point of origin of LASV in the MRU area, with subsequent spread to towards Mali, Liberia and Sierra Leone at a mean speed of 1.6 to 1.1 km/year.


Assuntos
Febre Lassa , Vírus Lassa , Camundongos , Animais , Vírus Lassa/genética , Febre Lassa/epidemiologia , Filogenia , África Ocidental/epidemiologia , Murinae
3.
Emerg Infect Dis ; 29(2): 304-313, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692336

RESUMO

Lassa fever virus (LASV) is the causative agent of Lassa fever, a disease endemic in West Africa. Exploring the relationships between environmental factors and LASV transmission across ecologically diverse regions can provide crucial information for the design of appropriate interventions and disease monitoring. We investigated LASV exposure in 2 ecologically diverse regions of Guinea. Our results showed that exposure to LASV was heterogenous between and within sites. LASV IgG seropositivity was 11.9% (95% CI 9.7%-14.5%) in a coastal study site in Basse-Guinée, but it was 59.6% (95% CI 55.5%-63.5%) in a forested study site located in Guinée Forestière. Seropositivity increased with age in the coastal site. We also found significant associations between exposure risk for LASV and landscape fragmentation in coastal and forested regions. Our study highlights the potential link between environmental change and LASV emergence and the urgent need for research on land management practices that reduce disease risks.


Assuntos
Febre Lassa , Humanos , Febre Lassa/epidemiologia , Guiné/epidemiologia , Vírus Lassa , África Ocidental
4.
PLoS Negl Trop Dis ; 17(1): e0011078, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36693059

RESUMO

[This corrects the article DOI: 10.1371/journal.pntd.0009212.].

5.
Virus Evol ; 8(2): veac066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533141

RESUMO

The hepatitis C virus genotype 2 (HCV2) is endemic in Western and Central Africa. The HCV2 evolutionary origins remain uncertain due to the paucity of available genomes from African settings. In this study, we investigated the molecular epidemiology of HCV infections in rural Guinea, Western Africa, during 2004 and 2014. Broadly reactive nested reverse transcription polymerase chain reaction (RT-PCR)-based screening of sera from 1,571 asymptomatic adults resulted in the detection of 25 (1.5 per cent; 95 per cent confidence interval 0.9-2.3) positive samples, with a median viral load of 2.54E + 05 IU/ml (interquartile range 6.72E + 05). HCV-infected persons had a median age of 47 years, and 62.5 per cent were male and 37.5 per cent were female. The full polyprotein-encoding genes were retrieved by a combination of high throughput and Sanger sequencing from 17 samples showing sufficiently high viral loads. Phylogenetic analysis and sequence distances ≥13 per cent averaged over the polyprotein genes compared to other HCV2 subtypes revealed nine previously unknown HCV2 subtypes. The time to the most recent common ancestor of the Guinean HCV2 strains inferred in a Bayesian framework was 493 years (95 per cent Highest posterior density (HPD) 453-532). Most of the Guinean strains clustered poorly by location on both the level of sampling sites within Guinea and the level of countries in the phylogenetic reconstructions. Ancestral state reconstruction provided decisive support (Bayes factor > 100) for an origin of HCV2 in Western Africa. Phylogeographic reconstructions in a Bayesian framework pointed to a radial diffusion of HCV2 from Western African regions encompassing today's countries like Ghana, Guinea Bissau, or Burkina Faso, to Central and Northern African regions that took place from the 16th century onwards. The spread of HCV2 coincided in time and space with the main historic slave trade and commerce routes, supported by Bayesian tip-association significance testing (P = 0.01). Our study confirms the evolutionary origins of HCV2 in Western Africa and provides a potential link between historic human movements and HCV2 dispersion.

6.
Virus Evol ; 8(2): veac061, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35854826

RESUMO

The subfamily Orthoparamyxovirinae is a group of single-stranded, negative-sense RNA viruses that contains many human, animal, and zoonotic pathogens. While there are currently only forty-two recognized species in this subfamily, recent research has revealed that much of its diversity remains to be characterized. Using a newly developed nested PCR-based screening assay, we report here the discovery of fifteen orthoparamyxoviruses in rodents and shrews from Belgium and Guinea, thirteen of which are believed to represent new species. Using a combination of nanopore and sanger sequencing, complete genomes could be determined for almost all these viruses, enabling a detailed evaluation of their genome characteristics. While most viruses are thought to belong to the rapidly expanding genus Jeilongvirus, we also identify novel members of the genera Narmovirus, Henipavirus, and Morbillivirus. Together with other recently discovered orthoparamyxoviruses, both henipaviruses and the morbillivirus discovered here appear to form distinct rodent-/shrew-borne clades within their respective genera, clustering separately from all currently classified viruses. In the case of the henipaviruses, a comparison of the different members of this clade revealed the presence of a secondary conserved open reading frame, encoding for a transmembrane protein, within the F gene, the biological relevance of which remains to be established. While the characteristics of the viruses described here shed further light on the complex evolutionary origin of paramyxoviruses, they also illustrate that the diversity of this group of viruses in terms of genome organization appears to be much larger than previously assumed.

8.
Front Immunol ; 13: 857481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493467

RESUMO

The 2013-2016 Ebola virus (EBOV) epidemic in West Africa was unprecedented in case numbers and fatalities, and sporadic outbreaks continue to arise. Antibodies to the EBOV glycoprotein (GP) are strongly associated with survival and their use in immunotherapy is often initially based on their performance in neutralisation assays. Other immune effector functions also contribute to EBOV protection but are more complex to measure. Their interactions with the complement system in particular are comparatively under-researched and commonly excluded from cellular immunoassays. Using EBOV convalescent plasma samples from the 2013-2016 epidemic, we investigated antibody and complement-mediated neutralisation and how these interactions can influence immunity in response to EBOV-GP and its secreted form (EBOV-sGP). We defined two cohorts: one with low-neutralising titres in relation to EBOV-GP IgG titres (LN cohort) and the other with a direct linear relationship between neutralisation and EBOV-GP IgG titres (N cohort). Using flow cytometry antibody-dependent complement deposition (ADCD) assays, we found that the LN cohort was equally efficient at mediating ADCD in response to the EBOV-GP but was significantly lower in response to the EBOV-sGP, compared to the N cohort. Using wild-type EBOV neutralisation assays with a cohort of the LN plasma, we observed a significant increase in neutralisation associated with the addition of pooled human plasma as a source of complement. Flow cytometry ADCD was also applied using the GP of the highly virulent Sudan virus (SUDV) of the Sudan ebolavirus species. There are no licensed vaccines or therapeutics against SUDV and it overlaps in endemicity with EBOV. We found that the LN plasma was significantly less efficient at cross-reacting and mediating ADCD. Overall, we found a differential response in ADCD between LN and N plasma in response to various Ebolavirus glycoproteins, and that these interactions could significantly improve EBOV neutralisation for selected LN plasma samples. Preservation of the complement system in immunoassays could augment our understanding of neutralisation and thus protection against infection.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Anticorpos Antivirais , Proteínas do Sistema Complemento , Glicoproteínas , Humanos , Imunoglobulina G , Sobreviventes
9.
Sci Rep ; 11(1): 20698, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667210

RESUMO

Lassa fever (LF) is a viral haemorrhagic fever endemic in West Africa and spread primarily by the multimammate rat, Mastomys natalensis. As there is no vaccine, reduction of rodent-human transmission is essential for disease control. As the household is thought to be a key site of transmission, understanding domestic risk factors for M. natalensis abundance is crucial. Rodent captures in conjunction with domestic surveys were carried out in 6 villages in an area of rural Upper Guinea with high LF endemicity. 120 rodent traps were set in rooms along a transect in each village for three nights, and the survey was administered in each household on the transects. This study was able to detect several domestic risk factors for increased rodent abundance in rural Upper Guinea. Regression analysis demonstrated that having > 8 holes (RR = 1.8 [1.0004-3.2, p = 0.048), the presence of rodent burrows (RR = 2.3 [1.6-3.23, p = 0.000003), and being in a multi-room square building (RR = 2.0 [1.3-2.9], p = 0.001) were associated with increased rodent abundance. The most addressable of these may be rodent burrows, as burrow patching is a relatively simple process that may reduce rodent entry. Further study is warranted to explicitly link domestic rodent abundance to LF risk, to better characterize domestic risk factors, and to evaluate how household rodent-proofing interventions could contribute to LF control.


Assuntos
Febre Lassa/epidemiologia , Febre Lassa/transmissão , Roedores/virologia , Adulto , Animais , Reservatórios de Doenças/virologia , Feminino , Guiné/epidemiologia , Humanos , Febre Lassa/virologia , Vírus Lassa/patogenicidade , Masculino , Pessoa de Meia-Idade , Ratos , Fatores de Risco , População Rural
10.
Pan Afr Med J ; 38: 402, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381546

RESUMO

INTRODUCTION: accurate and timely laboratory diagnosis of yellow fever (YF) is critical to the Eliminate Yellow Fever Epidemics (EYE) strategy. Gavi, the Vaccine Alliance recognized the need to support and build capacity in the national and regional laboratories in the Global YF Laboratory Network (GYFLN) as part of this strategy. METHODS: to better understand current capacity, gaps and needs of the GYFLN laboratories in Africa, assessments were carried out in national and regional reference laboratories in the 25 African countries at high risk for YF outbreaks that were eligible for new financial support from Gavi. RESULTS: the assessments found that the GYFLN in Africa has high capacity but 21% of specimens were not tested due to lack of testing kits or reagents and approximately 50% of presumptive YF cases were not confirmed at the regional reference laboratory due to problems with shipping. CONCLUSION: the laboratory assessments helped to document the baseline capacities of these laboratories prior to Gavi funding to support strengthening YF laboratories.


Assuntos
Surtos de Doenças , Laboratórios/estatística & dados numéricos , Febre Amarela/diagnóstico , África/epidemiologia , Fortalecimento Institucional , Epidemias , Humanos , Febre Amarela/epidemiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-34205104

RESUMO

Acute febrile illnesses occur frequently in Guinea. Acute fever itself is not a unique, hallmark indication (pathognomonic sign) of any one illness or disease. In the infectious disease context, fever's underlying cause can be a wide range of viral or bacterial pathogens, including the Ebola virus. In this study, molecular and serological methods were used to analyze samples from patients hospitalized with acute febrile illness in various regions of Guinea. This analysis was undertaken with the goal of accomplishing differential diagnosis (determination of causative pathogen) in such cases. As a result, a number of pathogens, both viral and bacterial, were identified in Guinea as causative agents behind acute febrile illness. In approximately 60% of the studied samples, however, a definitive determination could not be made.


Assuntos
Técnicas de Laboratório Clínico , Febre , Diagnóstico Diferencial , Febre/diagnóstico , Febre/etiologia , Guiné/epidemiologia , Humanos
12.
Microorganisms ; 9(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803988

RESUMO

To prevent the emergence of zoonotic infectious diseases and reduce their epidemic potential, we need to understand their origins in nature. Bats in the order Chiroptera are widely distributed worldwide and are natural reservoirs of prominent zoonotic viruses, including Nipah virus, Marburg virus, and possibly SARS-CoV-2. In this study, we applied unbiased metagenomic and metatranscriptomic approaches to decipher the virosphere of frugivorous and insectivorous bat species captured in Guéckédou, Guinea, the epicenter of the West African Ebola virus disease epidemic in 2013-2016. Our study provides a snapshot of the viral diversity present in these bat species, with several novel viruses reported for the first time in bats, as well as some bat viruses closely related to known human or animal pathogens. In addition, analysis of Mops condylurus genomic DNA samples revealed the presence of an Ebola virus nucleoprotein (NP)-derived pseudogene inserted in its genome. These findings provide insight into the evolutionary traits of several virus families in bats and add evidence that nonretroviral integrated RNA viruses (NIRVs) derived from filoviruses may be common in bat genomes.

13.
PLoS Negl Trop Dis ; 15(3): e0009212, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33730025

RESUMO

As a consequence of the Ebola outbreak, human-animal contact has gained importance for zoonotic transmission surveillance. In Faranah (Upper Guinea), daily life is intertwined with rodents, such as the Natal multimammate mouse, Mastomys natalensis; a reservoir for Lassa virus (LASV). However, this contact is rarely perceived as a health risk by residents, although Lassa fever (LF) is known to be endemic to this region. Conversely, these observations remain a great concern for global health agendas. Drawing on ethnographic research involving interviews, focus group discussions, participant observations, and informal discussions over four months, we first identified factors that motivated children to hunt and consume rodents in Faranah villages, and thereafter, explored the knowledge of LF infection in children and their parents. Furthermore, we studied two dimensions of human-rodent encounters: 1) space-time of interaction and 2) factors that allowed the interaction to occur and their materiality. This approach allowed us to contextualize child-rodent contacts beyond domestic limits in the fallow fields, swamps, and at other times for this practice. A close look at these encounters provided information on rodent trapping, killing, and manipulation of cooking techniques and the risk these activities posed for the primary transmission of LASV. This research facilitated the understanding of children's exposure to M. natalensis during hunting sessions and the importance of rodent hunting, which is a part of their boyish identity in rural areas. Determination of when, where, why, and how children, rodents, and environments interacted allowed us to understand the exposures and risks important for human and animal surveillance programs in the Lassa-endemic region.


Assuntos
Reservatórios de Doenças/veterinária , Doenças Endêmicas , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Roedores , Animais , Criança , Reservatórios de Doenças/virologia , Guiné/epidemiologia , Humanos , Febre Lassa/virologia , Vírus Lassa/imunologia , Controle de Roedores , Zoonoses
14.
Lancet Infect Dis ; 21(4): 507-516, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33065039

RESUMO

BACKGROUND: The 2013-16 Ebola virus disease epidemic in west Africa caused international alarm due to its rapid and extensive spread resulting in a significant death toll and social unrest within the affected region. The large number of cases provided an opportunity to study the long-term kinetics of Zaire ebolavirus-specific immune response of survivors in addition to known contacts of those infected with the virus. METHODS: In this observational cohort study, we worked with leaders of Ebola virus disease survivor associations in two regions of Guinea, Guéckédou and Coyah, to recruit survivors of Ebola virus disease, contacts from households of individuals known to have had Ebola virus disease, and individuals who were not knowingly associated with infected individuals or had not had Ebola virus disease symptoms to serve as negative controls. We did Zaire ebolavirus glycoprotein-specific T cell analysis on peripheral blood mononuclear cells (PBMCs) on location in Guinea and transported plasma and PBMCs back to Europe for antibody quantification by ELISA, functional neutralising antibody analysis using live Zaire ebolavirus, and T cell phenotype studies. We report on the longitudinal cellular and humoral response among Ebola virus disease survivors and highlight potentially paucisymptomatic infection. FINDINGS: We recruited 117 survivors of Ebola virus disease, 66 contacts, and 23 negative controls. The mean neutralising antibody titre among the Ebola virus disease survivors 3-14 months after infection was 1/174 (95% CI 1/136-1/223). Individual results varied greatly from 1/10 to more than 1/1000 but were on average ten times greater than that induced after 1 month by single dose Ebola virus vaccines. Following reactivation with glycoprotein peptide, the mean T cell responses among 116 Ebola virus disease survivors as measured by ELISpot was 305 spot-forming units (95% CI 257-353). The dominant CD8+ polyfunctional T cell phenotype, as measured among 53 Ebola virus disease survivors, was interferon γ+, tumour necrosis factor+, interleukin-2-, and the mean response was 0·046% of total CD8+ T cells (95% CI 0·021-0·071). Additionally, both neutralising antibody and T cell responses were detected in six (9%) of 66 Ebola virus disease contacts. We also noted that four (3%) of 117 individuals with Ebola virus disease infections did not have circulating Ebola virus-specific antibodies 3 months after infection. INTERPRETATION: The continuous high titre of neutralising antibodies and increased T cell response might support the concept of long-term protective immunity in survivors. The existence of antibody and T cell responses in contacts of individuals with Ebola virus disease adds further evidence to the existence of sub-clinical Ebola virus infection. FUNDING: US Food & Drug Administration, Horizon 2020 EU EVIDENT, Wellcome, UK Department for International Development. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Antivirais/sangue , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes/estatística & dados numéricos , Linfócitos T/imunologia , Adolescente , Adulto , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Criança , Pré-Escolar , Ebolavirus/patogenicidade , Epidemias , Feminino , Guiné/epidemiologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Humanos , Imunidade Celular , Imunidade Humoral , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
15.
BMC Infect Dis ; 20(1): 670, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933492

RESUMO

BACKGROUND: The 2014/15 Ebola outbreak in West Africa resulted in 11,000 deaths and massive strain on local health systems, and the ongoing outbreak in Democratic Republic of Congo has afflicted more than 3000 people. Accurate, rapid Ebola diagnostics suitable for field deployment would enable prompt identification and effective response to future outbreaks, yet remain largely unavailable. The purpose of this study was to assess the accuracy of three novel rapid diagnostic tests (RDTs): an Ebola, an Ebola-Malaria, and a Fever Panel test that includes Ebola, all from a single manufacturer. METHODS: We evaluated the three RDTs in 109 Ebola-positive and 96 Ebola-negative stored serum samples collected during the outbreak in Guinea in 2014/15, and tested by real-time polymerase chain reaction (RT-PCR). Sensitivity, specificity, and overall percent agreement were calculated for each RDT using RT-PCR as a reference standard, stratified by Ct value ranges. RESULTS: All tests performed with high accuracy on samples with low Ct value (high viral load). The Fever Panel test performed with the highest accuracy, with a sensitivity of 89.9% and specificity of 90.6%. The Ebola and Ebola-Malaria tests performed comparably to each other: sensitivity was 77.1 and 78% respectively, and specificity was 91.7% for the Ebola test and 95.8% for the Ebola-Malaria test. CONCLUSIONS: This study evaluated the accuracy of three novel rapid diagnostic tests for Ebola. The tests may have significant public health relevance, particularly the Fever Panel test, which detects seven pathogens including Ebola. Given limitations to the study resulting from uncertain sample quality, further evaluation is warranted. All tests performed with highest accuracy on samples with low Ct value (high viral load), and the data presented here suggests that these RDTs may be useful for point-of-care diagnosis of cases in the context of an outbreak. Restrictions to their use in non-severe Ebola cases or for longitudinal monitoring, when viral loads are lower, may be appropriate. Highlighting the challenge in developing and evaluating Ebola RDTs, there were concerns regarding sample integrity and reference testing, and there is a need for additional research to validate these assays.


Assuntos
Doença pelo Vírus Ebola/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Surtos de Doenças , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , RNA Viral/análise , RNA Viral/metabolismo , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
16.
Viruses ; 12(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977629

RESUMO

Lassa fever is a rodent-borne disease caused by Lassa virus (LASV). It causes fever, dizziness, vertigo, fatigue, coughing, diarrhea, internal bleeding and facial edema. The disease has been known in Guinea since 1960 but only anectodical acute cases have been reported to date. In January 2019, a 35-year-old man, a wood merchant from Kissidougou, Forest Guinea, presented himself at several health centers with persistent fever, frequent vomiting and joint pain. He was repeatedly treated for severe malaria, and died three weeks later in Mamou regional hospital. Differential diagnosis identified LASV as the cause of death. No secondary cases were reported. The complete LASV genome was obtained using next-generation sequencing. Phylogenetic analysis showed that this strain, namely the Kissidougou strain, belongs to the clade IV circulating in Guinea and Sierra Leone, and is thought to have emerged some 150 years ago. Due to the similarity of symptoms with malaria, Lassa fever is still a disease that is difficult to recognize and that may remain undiagnosed in health centers in Guinea.


Assuntos
Erros de Diagnóstico , Febre Lassa/diagnóstico , Adulto , Evolução Fatal , Genoma Viral , Guiné/epidemiologia , Humanos , Vírus Lassa/genética , Masculino
17.
Genome Biol ; 21(1): 238, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894206

RESUMO

BACKGROUND: Viral load is a major contributor to outcome in patients with Ebola virus disease (EVD), with high values leading to a fatal outcome. Evidence from the 2013-2016 Ebola virus (EBOV) outbreak indicated that different genotypes of the virus can have different phenotypes in patients. Additionally, due to the error-prone nature of viral RNA synthesis in an individual patient, the EBOV genome exists around a dominant viral genome sequence. The minor variants within a patient may contribute to the overall phenotype in terms of viral protein function. To investigate the effects of these minor variants, blood samples from patients with acute EVD were deeply sequenced. RESULTS: We examine the minor variant frequency between patients with acute EVD who survived infection with those who died. Non-synonymous differences in viral proteins were identified that have implications for viral protein function. The greatest frequency of substitution was identified at three codon sites in the L gene-which encodes the viral RNA-dependent RNA polymerase (RdRp). Recapitulating this in an assay for virus replication, these substitutions result in aberrant viral RNA synthesis and correlate with patient outcome. CONCLUSIONS: Together, these findings support the notion that in patients who survived EVD, in some cases, the genetic variability of the virus resulted in deleterious mutations that affected viral protein function, leading to reduced viral load. Such mutations may also lead to persistent strains of the virus and be associated with recrudescent infections.


Assuntos
Ebolavirus/genética , Genoma Viral , Doença pelo Vírus Ebola/virologia , Carga Viral , Humanos
18.
NPJ Vaccines ; 5(1): 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802410

RESUMO

Lassa mammarenavirus (LASV) is a rodent-borne arenavirus endemic to several West African countries. It is the causative agent of human Lassa fever, an acute viral hemorrhagic fever disease. To date, no therapeutics or vaccines against LASV have obtained regulatory approval. Polyclonal neutralizing antibodies derived from hyperimmunized animals may offer a useful strategy for prophylactic and therapeutic intervention to combat human LASV infections. The LASV envelope surface glycoprotein complex (GP) is the major target for neutralizing antibodies, and it is the main viral antigen used for the design of an LASV vaccine. Here, we assessed the immunogenic potential of mammalian cell-derived virus-like particles (VLPs) expressing GP from the prototypic LASV strain Josiah in a native-like conformation as the sole viral antigen. We demonstrate that an adjuvanted prime-boost immunization regimen with GP-derived VLPs elicited neutralizing antibody responses in rabbits, suggesting that effective antigenic epitopes of GP were displayed. Notably, these antibodies exhibited broad reactivity across five genetic lineages of LASV. VLP-based immunization strategies may represent a powerful approach for generating polyclonal sera containing cross-reactive neutralizing antibodies against LASV.

19.
Viruses ; 12(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825479

RESUMO

The last seven years have seen the greatest surge of Ebola virus disease (EVD) cases in equatorial Africa, including the 2013-2016 epidemic in West Africa and the recent epidemics in the Democratic Republic of Congo (DRC). The vaccine clinical trials that took place in West Africa and the DRC, as well as follow-up studies in collaboration with EVD survivor communities, have for the first time allowed researchers to compare immune memory induced by natural infection and vaccination. These comparisons may be relevant to evaluate the putative effectiveness of vaccines and candidate medical countermeasures such as convalescent plasma transfer. In this study, we compared the long-term functionality of anti-EBOV glycoprotein (GP) antibodies from EVD survivors with that from volunteers who received the recombinant vesicular stomatitis virus vectored vaccine (rVSV-ZEBOV) during the Phase I clinical trial in Hamburg. Our study highlights important differences between EBOV vaccination and natural infection and provides a framework for comparison with other vaccine candidates.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Sobreviventes , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Vacinas contra Ebola/administração & dosagem , Feminino , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulinas/sangue , Imunoglobulinas/imunologia , Memória Imunológica , Masculino , Vacinação , Vesiculovirus/imunologia , Proteínas do Envelope Viral/imunologia , Carga Viral
20.
Ticks Tick Borne Dis ; 11(5): 101475, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32723661

RESUMO

This article presents the results of a comprehensive survey of Guinea with the aim of assessing the burden of Crimean-Congo hemorrhagic fever virus (CCHFV) in rural areas of the country. Human serum samples (n = 2207) were studied using enzyme-linked immunosorbent assay (ELISA) for the presence of specific IgG against CCHFV. In addition, 4273 samples of partially- or fully-engorged ticks from several sources (cattle, domestic and roving dogs, and small mammals) were collected and studied using ELISA and RT-qPCR to detect CCHFV antigen and specific RNA. The data obtained show that 3.0 % of the population in rural Guinea was seropositive, without significant geographical or sexual differences. Seropositive individuals, however, were mainly in the 'active age' group (16-45 years old). Among ticks studied, the estimated prevalence of CCHFV was 1.3 ± 0.4 %. Five out of eight tick species studied were identified as CCHFV carriers in Guinea. Therefore, it can be assumed that the territory of Guinea is a single, continuous, natural focus of CCHFV. This identified medium intensity focus merits further study.


Assuntos
Febre Hemorrágica da Crimeia/epidemiologia , População Rural/estatística & dados numéricos , Adolescente , Adulto , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Guiné/epidemiologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Soroepidemiológicos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...