Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5470, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115831

RESUMO

Loading of MHC-I molecules with peptide by the catalytic chaperone tapasin in the peptide loading complex plays a critical role in antigen presentation and immune recognition. Mechanistic insight has been hampered by the lack of detailed structural information concerning tapasin-MHC-I. We present here crystal structures of human tapasin complexed with the MHC-I molecule HLA-B*44:05, and with each of two anti-tapasin antibodies. The tapasin-stabilized peptide-receptive state of HLA-B*44:05 is characterized by distortion of the peptide binding groove and destabilization of the ß2-microglobulin interaction, leading to release of peptide. Movements of the membrane proximal Ig-like domains of tapasin, HLA-B*44:05, and ß2-microglobulin accompany the transition to a peptide-receptive state. Together this ensemble of crystal structures provides insights into a distinct mechanism of tapasin-mediated peptide exchange.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Antígenos HLA-B , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulinas/metabolismo , Peptídeos/química , Ligação Proteica
2.
Front Immunol ; 13: 859782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464465

RESUMO

Immune recognition by T lymphocytes and natural killer (NK) cells is in large part dependent on the identification of cell surface MHC molecules bearing peptides generated from either endogenous (MHC I) or exogenous (MHC II) dependent pathways. This review focuses on MHC I molecules that coordinately fold to bind self or foreign peptides for such surface display. Peptide loading occurs in an antigen presentation pathway that includes either the multimolecular peptide loading complex (PLC) or a single chain chaperone/catalyst, TAP binding protein, related, TAPBPR, that mimics a key component of the PLC, tapasin. Recent structural and dynamic studies of TAPBPR reveal details of its function and reflect on mechanisms common to tapasin. Regions of structural conservation among species suggest that TAPBPR and tapasin have evolved to satisfy functional complexities demanded by the enormous polymorphism of MHC I molecules. Recent studies suggest that these two chaperone/catalysts exploit structural flexibility and dynamics to stabilize MHC molecules and facilitate peptide loading.


Assuntos
Apresentação de Antígeno , Imunoglobulinas , Antígenos de Histocompatibilidade Classe I , Proteínas de Membrana/metabolismo , Chaperonas Moleculares , Peptídeos
3.
Front Immunol ; 9: 1657, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065727

RESUMO

Antigen presentation is a cellular process that involves a number of steps, beginning with the production of peptides by proteolysis or aberrant synthesis and the delivery of peptides to cellular compartments where they are loaded on MHC class I (MHC-I) or MHC class II (MHC-II) molecules. The selective loading and editing of high-affinity immunodominant antigens is orchestrated by molecular chaperones: tapasin/TAP-binding protein, related for MHC-I and HLA-DM for MHC-II. Once peptide/MHC (pMHC) complexes are assembled, following various steps of quality control, they are delivered to the cell surface, where they are available for identification by αß receptors on CD8+ or CD4+ T lymphocytes. In addition, recognition of cell surface peptide/MHC-I complexes by natural killer cell receptors plays a regulatory role in some aspects of the innate immune response. Many of the components of the pathways of antigen processing and presentation and of T cell receptor (TCR)-mediated signaling have been studied extensively by biochemical, genetic, immunological, and structural approaches over the past several decades. Until recently, however, dynamic aspects of the interactions of peptide with MHC, MHC with molecular chaperones, or of pMHC with TCR have been difficult to address experimentally, although computational approaches such as molecular dynamics (MD) simulations have been illuminating. Studies exploiting X-ray crystallography, cryo-electron microscopy, and multidimensional nuclear magnetic resonance (NMR) spectroscopy are beginning to reveal the importance of molecular flexibility as it pertains to peptide loading onto MHC molecules, the interactions between pMHC and TCR, and subsequent TCR-mediated signals. In addition, recent structural and dynamic insights into how molecular chaperones define peptide selection and fine-tune the MHC displayed antigen repertoire are discussed. Here, we offer a review of current knowledge that highlights experimental data obtained by X-ray crystallography and multidimensional NMR methodologies. Collectively, these findings strongly support a multifaceted role for protein plasticity and conformational dynamics throughout the antigen processing and presentation pathway in dictating antigen selection and recognition.

4.
Science ; 358(6366): 1064-1068, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29025991

RESUMO

Central to CD8+ T cell-mediated immunity is the recognition of peptide-major histocompatibility complex class I (p-MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein-related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of key binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/química , Imunoglobulinas/química , Proteínas de Membrana/química , Microglobulina beta-2/química , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Humanos , Imunoglobulinas/ultraestrutura , Proteínas de Membrana/ultraestrutura , Peptídeos/química , Conformação Proteica , Ressonância de Plasmônio de Superfície , Microglobulina beta-2/ultraestrutura
5.
Proc Natl Acad Sci U S A ; 113(8): E1006-15, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26869717

RESUMO

Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.


Assuntos
Apresentação de Antígeno , Antígeno HLA-A2/imunologia , Imunoglobulinas/imunologia , Proteínas de Membrana/imunologia , Peptídeos/imunologia , Animais , Linhagem Celular , Drosophila melanogaster , Antígeno HLA-A2/genética , Humanos , Imunoglobulinas/genética , Proteínas de Membrana/genética , Peptídeos/genética
6.
Mol Immunol ; 55(2): 123-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23200143

RESUMO

The mature conformation of major histocompatibility complex class I (MHC-I) proteins depends on the presence of bound peptides, permitting recognition at the cell surface by CD8(+) T lymphocytes. Newly synthesized MHC-I molecules in the endoplasmic reticulum are maintained in a peptide-receptive (PR) transition state by several chaperones until they are released concomitant with the loading of peptides. By determining the crystallographic structure of a region of an MHC-I molecule that is recognized by a unique monoclonal antibody and comparing this with docking and molecular dynamics simulations with the whole molecule, we demonstrate the movement of a hinged unit supporting the part of the binding groove that interacts with the amino terminal residues of the bound peptide. This unit contains a conserved 310 helix that flips from an exposed "open" position in the PR form to a "closed" position in the peptide-loaded (PL) mature molecule. These analyses indicate how this segment of the MHC-I molecule moves to help establish the A and B pockets critical for tight peptide binding and the stable structure required for antigen presentation and T cell recognition at the cell surface.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Simulação de Dinâmica Molecular , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/ultraestrutura , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Apresentação de Antígeno , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
7.
J Immunol ; 189(3): 1391-9, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753930

RESUMO

MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed "open" position in the PR transition state to a "closed" position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.


Assuntos
Antígenos H-2/metabolismo , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Antígenos H-2/química , Antígeno de Histocompatibilidade H-2D , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Relação Estrutura-Atividade , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
8.
Eur J Immunol ; 38(12): 3339-53, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19039784

RESUMO

We examined TCR:MHC/peptide interactions and in vivo epitope availability to explore the Th1- or Th2-like phenotype of autoimmune disease in two TCR Tg mouse models of autoimmune gastritis (AIG). The TCR of strains A23 and A51 recognize distinct IA(d)-restricted peptides from the gastric parietal cell H/K-ATPase. Both peptides form extremely stable MHC/peptide (MHC/p) complexes. All A23 animals develop a Th1-like aggressive, inflammatory AIG early in life, while A51 mice develop indolent Th2-like AIG at 6-8 wk with incomplete penetrance. A51 T cells were more sensitive than A23 to low doses of soluble antigen and to MHC/p complexes. Staining with IA(d)/peptide tetramers was only detectable on previously activated T cells from A51. Thus, despite inducing a milder AIG, the A51 TCR displays a higher avidity for its cognate IA(d)/peptide. Nonetheless, in vivo proliferation of adoptively transferred A51 CFSE-labeled T cells in the gastric lymph node was relatively poor compared with A23 T cells. Also, DC from WT gastric lymph node, presenting processed antigen available in vivo, stimulated proliferation of A23 T cells better than A51. Thus, the autoimmune potential of these TCR in their respective Tg lines is strongly influenced by the availability of the peptide epitope, rather than by differential avidity for their respective MHC/p complexes.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Epitopos/imunologia , Gastrite/imunologia , Gastrite/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Proteínas de Transporte de Cátions/metabolismo , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Gastrite/genética , Gastrite/metabolismo , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Peptídeos/química , Peptídeos/imunologia , Fenótipo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...