Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 21(17): 4997-5003, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886809

RESUMO

Chitin synthases polymerize UDP-GlcNAC to form chitin polymer, a key component of fungal cell wall biosynthesis. Furthermore, chitin synthases are desirable targets for fungicides since chitin is absent in plants and mammals. Two potent Botrytis cinerea chitin synthase inhibitors, 2,3,5-tri-O-benzyl-d-ribose (compound 1) and a 2,5-functionalized imidazole (compound 2) were identified by screening a chemical library. We adapted the wheat germ agglutinin (WGA) test for chitin synthase activity detection to allow miniaturization and robotization of the screen. Both identified compounds inhibited chitin synthases in vitro with IC50 values of 1.8 and 10µM, respectively. Compounds 1 and 2 were evaluated for their antifungal activity and were found to be active against B. cinerea BD90 strain with MIC values of 190 and 100µM, respectively. Finally, we discovered that both compounds confer resistance to plant leaves against the attack of the fungus by reducing the propagation of lesions by 37% and 23%, respectively. Based on the inhibitory properties found in different assays, compounds 1 and 2 can be considered as antifungal hit inhibitors of chitin synthase, allowing further optimization of their pharmacological profile to improve their antifungal properties.


Assuntos
Antifúngicos/química , Botrytis/enzimologia , Quitina Sintase/antagonistas & inibidores , Inibidores Enzimáticos/química , Imidazóis/química , Ribose/análogos & derivados , Bibliotecas de Moléculas Pequenas/química , Antifúngicos/farmacologia , Arabidopsis/microbiologia , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Quitina Sintase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Imidazóis/farmacologia , Cinética , Testes de Sensibilidade Microbiana , Miniaturização , Doenças das Plantas/microbiologia , Ribose/química , Ribose/farmacologia , Robótica , Bibliotecas de Moléculas Pequenas/farmacologia
2.
BMC Res Notes ; 3: 299, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21070667

RESUMO

BACKGROUND: Chitin synthase 3a (CHS3a) from Botrytis cinerea (Bc) catalyses the multiple transfer of N-acetylglucosamine (GlcNAc) residues to the growing chitin chain. Chitin, a ß-1,4 linked GlcNAc homopolymer, is an essential cell wall component of filamentous fungi. Chitin synthase, processive membranous protein, has been recognized as a promising target for new antifungicides. Enzymatic characterizations of chitin synthases have been limited, mainly because purity and amounts of integral enzyme obtained after purification procedures have not been sufficient. FINDINGS: We undertook the preparation of two BcCHS3a fragment proteins, containing only the central domain and devoid of the N-terminal and transmembrane C-terminal regions. The central domain of CHS3a, named SGC (Spsa GntI Core), is conserved in all UDP-glycosyltransferases and it is believed to contain the active site of the enzyme. CHS3a-SGC protein was totally expressed as inclusion bodies in Escherichia coli. We performed recombinant CHS3a-SGC purification in denaturing conditions, followed by a refolding step. Although circular dichroism spectra clearly exhibited secondary structures of renatured CHS3a-SGC, no chitin synthase activity was detected. Nevertheless CHS3a-SGC proteins show specific binding for the substrate UDP-GlcNAc with a dissociation constant similar to the Michaelis constant and a major contribution of the uracil moiety for recognition was confirmed. CONCLUSIONS: Milligram-scale quantities of CHS3a-SGC protein with native-like properties such as specific substrate UDP-GlcNAc binding could be easily obtained. These results are encouraging for subsequent heterologous expression of full-length CHS3a.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...