Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116683, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705130

RESUMO

OBJECTIVE: Blockade of activin 2 receptor (ACVR2) signaling has been shown to improve insulin sensitivity and aid in weight loss. Inhibition of ACVR2 signaling restores cardiac function in multiple heart failure models. However, its potential in the treatment of obesity-related cardiometabolic disease remains unknown. Here, we investigated targeting ACVR2 signaling in cardiometabolic disease manifested with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Mice were fed a high-fat, high-sugar diet combined with the administration of nitric oxide synthase inhibitor L-NAME in drinking water, which causes hypertensive stress. For the last eight weeks, the mice were treated with the soluble ACVR2B decoy receptor (sACVR2B-Fc). RESULTS: sACVR2B-Fc protected against the development of comorbidities associated with cardiometabolic disease. This was most pronounced in the liver where ACVR2 blockade attenuated the development of MASLD including cessation of pro-fibrotic activation. It also significantly reduced total plasma cholesterol levels, impeded brown adipose tissue whitening, and improved cardiac diastolic function. In vitro, ACVR2 ligands activin A, activin B and GDF11 induced profibrotic signaling and the proliferation of human cardiac fibroblasts. CONCLUSIONS: Blockade of ACVR2B exerts broad beneficial effects for therapy of cardiometabolic disease. By reducing obesity, ameliorating cardiovascular deterioration and restraining MASLD, blockade of ACVR2B signaling proves a potential target in MASLD and its comorbidities.


Assuntos
Receptores de Activinas Tipo II , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster , Transdução de Sinais , Animais , Transdução de Sinais/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Masculino , Camundongos , Receptores de Activinas Tipo II/metabolismo , Humanos , Dieta Ocidental/efeitos adversos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia
2.
Am J Physiol Cell Physiol ; 326(5): C1437-C1450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525542

RESUMO

Plasma apelin levels are reduced in aging and muscle wasting conditions. We aimed to investigate the significance of apelin signaling in cardiac and skeletal muscle responses to physiological stress. Apelin knockout (KO) and wild-type (WT) mice were subjected to high-intensity interval training (HIIT) by treadmill running. The effects of apelin on energy metabolism were studied in primary mouse skeletal muscle myotubes and cardiomyocytes. Apelin increased mitochondrial ATP production and mitochondrial coupling efficiency in myotubes and promoted the expression of mitochondrial genes both in primary myotubes and cardiomyocytes. HIIT induced mild concentric cardiac hypertrophy in WT mice, whereas eccentric growth was observed in the left ventricles of apelin KO mice. HIIT did not affect myofiber size in skeletal muscles of WT mice but decreased the myofiber size in apelin KO mice. The decrease in myofiber size resulted from a fiber type switch toward smaller slow-twitch type I fibers. The increased proportion of slow-twitch type I fibers in apelin KO mice was associated with upregulation of myosin heavy chain slow isoform expression, accompanied with upregulated expression of genes related to fatty acid transport and downregulated expression of genes related to glucose metabolism. Mechanistically, skeletal muscles of apelin KO mice showed defective induction of insulin-like growth factor-1 signaling in response to HIIT. In conclusion, apelin is required for proper skeletal and cardiac muscle adaptation to high-intensity exercise. Promoting apelinergic signaling may have benefits in aging- or disease-related muscle wasting conditions.NEW & NOTEWORTHY Apelin levels decline with age. This study demonstrates that in trained mice, apelin deficiency results in a switch from fast type II myofibers to slow oxidative type I myofibers. This is associated with a concomitant change in gene expression profile toward fatty acid utilization, indicating an aged-muscle phenotype in exercised apelin-deficient mice. These data are of importance in the design of exercise programs for aging individuals and could offer therapeutic target to maintain muscle mass.


Assuntos
Adaptação Fisiológica , Apelina , Camundongos Knockout , Músculo Esquelético , Condicionamento Físico Animal , Animais , Apelina/metabolismo , Apelina/genética , Camundongos , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Masculino , Miócitos Cardíacos/metabolismo , Metabolismo Energético , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/patologia
3.
Commun Med (Lond) ; 3(1): 87, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349571

RESUMO

BACKGROUND: All coronary artery disease (CAD) patients do not benefit equally of secondary prevention. Individualized intensity of drug therapy is currently implemented in guidelines for CAD and diabetes. Novel biomarkers are needed to identify patient subgroups potentially benefitting from individual therapy. This study aimed to investigate endothelin-1 (ET-1) as a biomarker for increased risk of adverse events and to evaluate if medication could alleviate the risks in patients with high ET-1. METHODS: A prospective observational cohort study ARTEMIS included 1946 patients with angiographically documented CAD. Blood samples and baseline data were collected at enrollment and the patients were followed for 11 years. Multivariable Cox regression was used to assess the association between circulating ET-1 level and all-cause mortality, cardiovascular (CV) death, non-CV death and sudden cardiac death (SCD). RESULTS: Here we show an association of circulating ET-1 level with higher risk for all-cause mortality (HR: 2.06; 95% CI 1.5-2.83), CV death, non-CV death and SCD in patients with CAD. Importantly, high intensity statin therapy reduces the risk for all-cause mortality (adjusted HR: 0.05; 95% CI 0.01-0.38) and CV death (adjusted HR: 0.06; 95% CI 0.01-0.44) in patients with high ET-1, but not in patients with low ET-1. High intensity statin therapy does not associate with reduction of risk for non-CV death or SCD. CONCLUSIONS: Our data suggests a prognostic value for high circulating ET-1 in patients with stable CAD. High intensity statin therapy associates with reduction of risk for all-cause mortality and CV death in CAD patients with high ET-1.


Patients with coronary artery disease (CAD) ­ in which the blood vessels supplying the heart become blocked - need careful management to prevent adverse outcomes related to their disease, such as a heart attack or sudden cardiac death. Identification of markers in the blood to predict adverse outcomes would help to improve the care of patients with CAD. Here, we find that higher circulating levels of endothelin-1 (ET-1), a protein secreted normally to maintain blood pressure, associate with greater risk of death in CAD patients. Cholesterol-lowering statin therapy used at high intensity (high dosage) can counteract the increased risk of death observed in CAD patients with high ET-1. Therefore, circulating ET-1 level could be used as a marker to predict the risk of death in CAD patients, and an indication for high intensity statin therapy. Our findings could help clinicians to improve the management of patients with CAD.

4.
Toxicol Rep ; 10: 521-528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152411

RESUMO

Dasatinib is a multitargeted kinase inhibitor used for treatment of chronic myeloid leukemia and acute lymphoblastic leukemia. Unfortunately, treatment of cancer patients with some kinase inhibitors has been associated with cardiotoxicity. Cancer treatment with dasatinib has been reported to be associated with cardiotoxic side effects such as left ventricular dysfunction, heart failure, pericardial effusion and pulmonary hypertension. Here we aimed to investigate the molecular mechanisms underlying the cardiotoxicity of dasatinib. We found that among the resident cardiac cell types, cardiomyocytes were most sensitive to dasatinib-induced cell death. Exposure of cardiomyocytes to dasatinib attenuated the activity of extracellular signal-regulated kinase (ERK), which is a downstream target of dasatinib target kinase c-Src. Similar to dasatinib, c-Src depletion in cardiomyocytes compromised cardiomyocyte viability. Overexpression of dasatinib-resistant mutant of c-Src rescued the toxicity of dasatinib on cardiomyocytes, whereas forced expression of wild type c-Src did not have protective effect. Collectively, our results show that c-Src is a key target of dasatinib mediating the toxicity of dasatinib to cardiomyocytes. These findings may influence future drug design and suggest closer monitoring of patients treated with agents targeting c-Src for possible adverse cardiac effects.

5.
FASEB J ; 36(10): e22544, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36098469

RESUMO

Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11-/-) heart and subjected adult mice with partial (Wnt11+/-) and complete Wnt11 (Wnt11-/-) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth. Wnt11 deficiency did not affect cardiomyocyte proliferation or maturation in the postnatal or adolescent heart. However, Wnt11 deficiency led to enlarged heart phenotype that was not accompanied by significant hypertrophy of individual cardiomyocytes. Analysis of stressed adult hearts from wild-type mice showed a progressive decrease in Wnt11 expression in response to pressure overload. When studied in experimental cardiac pressure overload, Wnt11 deficiency did not exacerbate cardiac hypertrophy or remodeling and cardiac function remained identical between the genotypes. When subjecting cardiomyocytes to hypertrophic stimulus, the presence of recombinant Wnt11 together with Wnt5a reduced protein synthesis. In conclusion, Wnt11 deficiency does not affect postnatal cardiomyocyte proliferation but leads to cardiac growth. Interestingly, Wnt11 deficiency alone does not substantially modulate hypertrophic response to pressure overload in vivo. Wnt11 may require cooperation with other noncanonical Wnt proteins to regulate hypertrophic response under stress.


Assuntos
Coração/crescimento & desenvolvimento , Miócitos Cardíacos/metabolismo , Proteínas Wnt/metabolismo , Animais , Cardiomegalia/metabolismo , Proliferação de Células , Camundongos , Miocárdio , Proteínas Wnt/genética
6.
J Mol Cell Cardiol ; 165: 130-140, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34973276

RESUMO

BACKGROUND: Cardiac fibrosis stiffens the ventricular wall, predisposes to cardiac arrhythmias and contributes to the development of heart failure. In the present study, our aim was to identify novel miRNAs that regulate the development of cardiac fibrosis and could serve as potential therapeutic targets for myocardial fibrosis. METHODS AND RESULTS: Analysis for cardiac samples from sudden cardiac death victims with extensive myocardial fibrosis as the primary cause of death identified dysregulation of miR-185-5p. Analysis of resident cardiac cells from mice subjected to experimental cardiac fibrosis model showed induction of miR-185-5p expression specifically in cardiac fibroblasts. In vitro, augmenting miR-185-5p induced collagen production and profibrotic activation in cardiac fibroblasts, whereas inhibition of miR-185-5p attenuated collagen production. In vivo, targeting miR-185-5p in mice abolished pressure overload induced cardiac interstitial fibrosis. Mechanistically, miR-185-5p targets apelin receptor and inhibits the anti-fibrotic effects of apelin. Finally, analysis of left ventricular tissue from patients with severe cardiomyopathy showed an increase in miR-185-5p expression together with pro-fibrotic TGF-ß1 and collagen I. CONCLUSIONS: Our data show that miR-185-5p targets apelin receptor and promotes myocardial fibrosis.


Assuntos
Cardiomiopatias , MicroRNAs , Animais , Receptores de Apelina/metabolismo , Cardiomiopatias/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , MicroRNAs/metabolismo
7.
J Mol Cell Cardiol ; 164: 148-155, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919895

RESUMO

AIMS: We have previously demonstrated protection against obesity, metabolic dysfunction, atherosclerosis and cardiac ischemia in a hypoxia-inducible factor (HIF) prolyl 4-hydroxylase-2 (Hif-p4h-2) deficient mouse line, attributing these protective effects to activation of the hypoxia response pathway in a normoxic environment. We intended here to find out whether the Hif-p4h-2 deficiency affects the cardiac health of these mice upon aging. METHODS AND RESULTS: When the Hif-p4h-2 deficient mice and their wild-type littermates were monitored during normal aging, the Hif-p4h-2 deficient mice had better preserved diastolic function than the wild type at one year of age and less cardiomyocyte hypertrophy at two years. On the mRNA level, downregulation of hypertrophy-associated genes was detected and shown to be associated with upregulation of Notch signaling, and especially of the Notch target gene and transcriptional repressor Hairy and enhancer-of-split-related basic helix-loop-helix (Hey2). Blocking of Notch signaling in cardiomyocytes isolated from Hif-p4h-2 deficient mice with a gamma-secretase inhibitor led to upregulation of the hypertrophy-associated genes. Also, targeting Hey2 in isolated wild-type rat neonatal cardiomyocytes with siRNA led to upregulation of hypertrophic genes and increased leucine incorporation indicative of increased protein synthesis and hypertrophy. Finally, oral treatment of wild-type mice with a small molecule inhibitor of HIF-P4Hs phenocopied the effects of Hif-p4h-2 deficiency with less cardiomyocyte hypertrophy, upregulation of Hey2 and downregulation of the hypertrophy-associated genes. CONCLUSIONS: These results indicate that activation of the hypoxia response pathway upregulates Notch signaling and its target Hey2 resulting in transcriptional repression of hypertrophy-associated genes and less cardiomyocyte hypertrophy. This is eventually associated with better preserved cardiac function upon aging. Activation of the hypoxia response pathway thus has therapeutic potential for combating age-induced cardiac hypertrophy.


Assuntos
Cardiomegalia , Hipóxia , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Camundongos , Ratos
8.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948382

RESUMO

Prior studies show that glycogen synthase kinase 3ß (GSK3ß) contributes to cardiac ischemic injury and cardiac hypertrophy. GSK3ß is constitutionally active and phosphorylation of GSK3ß at serine 9 (S9) inactivates the kinase and promotes cellular growth. GSK3ß is also phosphorylated at serine 389 (S389), but the significance of this phosphorylation in the heart is not known. We analyzed GSK3ß S389 phosphorylation in diseased hearts and utilized overexpression of GSK3ß carrying ser→ala mutations at S9 (S9A) and S389 (S389A) to study the biological function of constitutively active GSK3ß in primary cardiomyocytes. We found that phosphorylation of GSK3ß at S389 was increased in left ventricular samples from patients with dilated cardiomyopathy and ischemic cardiomyopathy, and in hearts of mice subjected to thoracic aortic constriction. Overexpression of either GSK3ß S9A or S389A reduced the viability of cardiomyocytes subjected to hypoxia-reoxygenation. Overexpression of double GSK3ß mutant (S9A/S389A) further reduced cardiomyocyte viability. Determination of protein synthesis showed that overexpression of GSK3ß S389A or GSK3ß S9A/S389A increased both basal and agonist-induced cardiomyocyte growth. Mechanistically, GSK3ß S389A mutation was associated with activation of mTOR complex 1 signaling. In conclusion, our data suggest that phosphorylation of GSK3ß at S389 enhances cardiomyocyte survival and protects from cardiomyocyte hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/patologia , Animais , Cardiomegalia/patologia , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Fosforilação , Ratos Sprague-Dawley
9.
FASEB J ; 34(8): 9911-9924, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32427381

RESUMO

Signaling through activin receptors regulates skeletal muscle mass and activin receptor 2B (ACVR2B) ligands are also suggested to participate in myocardial infarction (MI) pathology in the heart. In this study, we determined the effect of systemic blockade of ACVR2B ligands on cardiac function in experimental MI, and defined its efficacy to revert muscle wasting in ischemic heart failure (HF). Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) to study its effect on post-MI cardiac remodeling and on later HF. Cardiac function was determined with echocardiography, and myocardium analyzed with histological and biochemical methods for hypertrophy and fibrosis. Pharmacological blockade of ACVR2B ligands did not rescue the heart from ischemic injury or alleviate post-MI remodeling and ischemic HF. Collectively, ACVR2B-Fc did not affect cardiomyocyte hypertrophy, fibrosis, angiogenesis, nor factors associated with cardiac regeneration except modification of certain genes involved in metabolism or cell growth/survival. ACVR2B-Fc, however, was able to reduce skeletal muscle wasting in chronic ischemic HF, accompanied by reduced LC3II as a marker of autophagy and increased mTOR signaling and Cited4 expression as markers of physiological hypertrophy in quadriceps muscle. Our results ascertain pharmacological blockade of ACVR2B ligands as a possible therapy for skeletal muscle wasting in ischemic HF. Pharmacological blockade of ACVR2B ligands preserved myofiber size in ischemic HF, but did not compromise cardiac function nor exacerbate cardiac remodeling after ischemic injury.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Modelos Animais de Doenças , Coração/fisiologia , Atrofia Muscular/prevenção & controle , Isquemia Miocárdica/complicações , Fatores de Transcrição/metabolismo , Remodelação Ventricular/fisiologia , Receptores de Activinas Tipo II/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Transdução de Sinais , Fatores de Transcrição/genética
10.
Mol Ther Nucleic Acids ; 20: 589-605, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32348937

RESUMO

Non-coding microRNAs (miRNAs) are powerful regulators of gene expression and critically involved in cardiovascular pathophysiology. The aim of the current study was to identify miRNAs regulating cardiac fibrosis. Cardiac samples of age-matched control subjects and sudden cardiac death (SCD) victims with primary myocardial fibrosis (PMF) were subjected to miRNA profiling. Old SCD victims with PMF and healthy aged human hearts showed increased expression of miR-1468-3p. In vitro studies in human cardiac fibroblasts showed that augmenting miR-1468-3p levels induces collagen deposition and cell metabolic activity and enhances collagen 1, connective tissue growth factor, and periostin expression. In addition, miR-1468-3p promotes cellular senescence with increased senescence-associated ß-galactosidase activity and increased expression of p53 and p16. AntimiR-1468-3p antagonized transforming growth factor ß1 (TGF-ß1)-induced collagen deposition and metabolic activity. Mechanistically, mimic-1468-3p enhanced p38 phosphorylation, while antimiR-1468-3p decreased TGF-ß1-induced p38 activation and abolished p38-induced collagen deposition. RNA sequencing analysis, a computational prediction model, and qPCR analysis identified dual-specificity phosphatases (DUSPs) as miR-1468-3p target genes, and regulation of DUSP1 by miR-1468-3p was confirmed with a dual-luciferase reporter assay. In conclusion, miR-1468-3p promotes cardiac fibrosis by enhancing TGF-ß1-p38 signaling. Targeting miR-1468-3p in the older population may be of therapeutic interest to reduce cardiac fibrosis.

11.
EBioMedicine ; 51: 102608, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31911272

RESUMO

BACKGROUND: Vascular endothelial zinc finger 1 (Vezf1) is a transcription factor previously shown to regulate vasculogenesis and angiogenesis. We aimed to investigate the role of Vezf1 in the postnatal heart. METHODS: The role of Vezf1 in regulating cardiac growth and contractile function was studied in zebrafish and in primary cardiomyocytes. FINDINGS: We find that expression of Vezf1 is decreased in diseased human myocardium and mouse hearts. Our experimental data shows that knockdown of zebrafish Vezf1 reduces cardiac growth and results in impaired ventricular contractile response to ß-adrenergic stimuli. However, Vezf1 knockdown is not associated with dysregulation of cardiomyocyte Ca2+ transient kinetics. Gene ontology enrichment analysis indicates that Vezf1 regulates cardiac muscle contraction and dilated cardiomyopathy related genes and we identify cardiomyocyte Myh7/ß-MHC as key target for Vezf1. We further identify a key role for an MCAT binding site in the Myh7 promoter regulating the response to Vezf1 knockdown and show that TEAD-1 is a binding partner of Vezf1. INTERPRETATION: We demonstrate a role for Vezf1 in regulation of compensatory cardiac growth and cardiomyocyte contractile function, which may be relevant in human cardiac disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adrenérgicos/farmacologia , Animais , Sítios de Ligação , Cardiomiopatias/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Peixe-Zebra
12.
J Am Heart Assoc ; 8(21): e013018, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31617439

RESUMO

Background Small molecule kinase inhibitors (KIs) are a class of agents currently used for treatment of various cancers. Unfortunately, treatment of cancer patients with some of the KIs is associated with cardiotoxicity, and there is an unmet need for methods to predict their cardiotoxicity. Here, we utilized a novel computational method to identify protein kinases crucial for cardiomyocyte viability. Methods and Results One hundred forty KIs were screened for their toxicity in cultured neonatal cardiomyocytes. The kinase targets of KIs were determined based on integrated data from binding assays. The key kinases mediating the toxicity of KIs to cardiomyocytes were identified by using a novel machine learning method for target deconvolution that combines the information from the toxicity screen and from the kinase profiling assays. The top kinases identified by the model were phosphoinositide 3-kinase catalytic subunit alpha, mammalian target of rapamycin, and insulin-like growth factor 1 receptor. Knockdown of the individual kinases in cardiomyocytes confirmed their role in regulating cardiomyocyte viability. Conclusions Combining the data from analysis of KI toxicity on cardiomyocytes and KI target profiling provides a novel method to predict cardiomyocyte toxicity of KIs.


Assuntos
Sobrevivência Celular , Aprendizado de Máquina , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor IGF Tipo 1/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiotoxinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos
13.
JACC Basic Transl Sci ; 4(1): 83-94, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30847422

RESUMO

Myocardial infarction (MI)-induced cardiac fibrosis attenuates cardiac contractile function, and predisposes to arrhythmias and sudden cardiac death. Expression of connective tissue growth factor (CTGF) is elevated in affected organs in virtually every fibrotic disorder and in the diseased human myocardium. Mice were subjected to treatment with a CTGF monoclonal antibody (mAb) during infarct repair, post-MI left ventricular (LV) remodeling, or acute ischemia-reperfusion injury. CTGF mAb therapy during infarct repair improved survival and reduced LV dysfunction, and reduced post-MI LV hypertrophy and fibrosis. Mechanistically, CTGF mAb therapy induced expression of cardiac developmental and/or repair genes and attenuated expression of inflammatory and/or fibrotic genes.

14.
Mol Ther ; 27(3): 600-610, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30765322

RESUMO

Activin A and myostatin, members of the transforming growth factor (TGF)-ß superfamily of secreted factors, are potent negative regulators of muscle growth, but their contribution to myocardial ischemia-reperfusion (IR) injury is not known. The aim of this study was to investigate if activin 2B (ACVR2B) receptor ligands contribute to myocardial IR injury. Mice were treated with soluble ACVR2B decoy receptor (ACVR2B-Fc) and subjected to myocardial ischemia followed by reperfusion for 6 or 24 h. Systemic blockade of ACVR2B ligands by ACVR2B-Fc was protective against cardiac IR injury, as evidenced by reduced infarcted area, apoptosis, and autophagy and better preserved LV systolic function following IR. ACVR2B-Fc modified cardiac metabolism, LV mitochondrial respiration, as well as cardiac phenotype toward physiological hypertrophy. Similar to its protective role in IR injury in vivo, ACVR2B-Fc antagonized SMAD2 signaling and cell death in cardiomyocytes that were subjected to hypoxic stress. ACVR2B ligand myostatin was found to exacerbate hypoxic stress. In addition to acute cardioprotection in ischemia, ACVR2B-Fc provided beneficial effects on cardiac function in prolonged cardiac stress in cardiotoxicity model. By blocking myostatin, ACVR2B-Fc potentially reduces cardiomyocyte death and modifies cardiomyocyte metabolism for hypoxic conditions to protect the heart from IR injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Proteína Smad2/metabolismo , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miostatina/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Smad2/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Basic Res Cardiol ; 114(2): 7, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635790

RESUMO

Sprouty1 (Spry1) is a negative modulator of receptor tyrosine kinase signaling, but its role in cardiomyocyte survival has not been elucidated. The aim of this study was to investigate the potential role of cardiomyocyte Spry1 in cardiac ischemia-reperfusion (I/R) injury. Infarct areas of mouse hearts showed an increase in Spry1 protein expression, which localized to cardiomyocytes. To investigate if cardiomyocyte Spry1 regulates I/R injury, 8-week-old inducible cardiomyocyte Spry1 knockout (Spry1 cKO) mice and control mice were subjected to cardiac I/R injury. Spry1 cKO mice showed reduction in release of cardiac troponin I and reduced infarct size after I/R injury compared to control mice. Similar to Spry1 knockdown in cardiomyocytes in vivo, RNAi-mediated Spry1 silencing in isolated cardiomyocytes improved cardiomyocyte survival following simulated ischemia injury. Mechanistically, Spry1 knockdown induced cardiomyocyte extracellular signal-regulated kinase (ERK) phosphorylation in healthy hearts and isolated cardiomyocytes, and enhanced ERK phosphorylation after I/R injury. Spry1-deficient cardiomyocytes showed better preserved mitochondrial membrane potential following ischemic injury and an increase in levels of phosphorylated ERK and phosphorylated glycogen synthase kinase-3ß (GSK-3ß) in mitochondria of hypoxic cardiomyocytes. Overexpression of constitutively active GSK-3ß abrogated the protective effect of Spry1 knockdown. Moreover, pharmacological inhibition of GSK-3ß protected wild-type cardiomyocytes from cell death, but did not further protect Spry1-silenced cardiomyocytes from hypoxia-induced injury. Cardiomyocyte Spry1 knockdown promotes ERK phosphorylation and offers protection from I/R injury. Our findings indicate that Spry1 is an important regulator of cardiomyocyte viability during ischemia-reperfusion injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Animais , Sobrevivência Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos
16.
Sci Rep ; 8(1): 1160, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348441

RESUMO

Identification of the adult cardiac stem cells (CSCs) has offered new therapeutic possibilities for treating ischemic myocardium. CSCs positive for the cell surface antigen c-Kit are known as the primary source for cardiac regeneration. Accumulating evidence shows that chemokines play important roles in stem cell homing. Here we investigated molecular targets to be utilized in modulating the mobility of endogenous CSCs. In a four week follow-up after experimental acute myocardial infarction (AMI) with ligation of the left anterior descending (LAD) coronary artery of Sprague-Dawley rats c-Kit+ CSCs redistributed in the heart. The number of c-Kit+ CSCs in the atrial c-Kit niche was diminished, whereas increased amount was observed in the left ventricle and apex. This was associated with increased expression of stromal cell-derived factor 1 alpha (SDF1α), and a significant positive correlation was found between c-Kit+ CSCs and SDF1α expression in the heart. Moreover, the migratory capacity of isolated c-Kit+ CSCs was induced by SDF1 treatment in vitro. We conclude that upregulation of SDF1α after AMI associates with increased expression of endogenous c-Kit+ CSCs in the injury area, and show induced migration of c-Kit+ cells by SDF1.


Assuntos
Células-Tronco Adultas/metabolismo , Quimiocina CXCL12/genética , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Regeneração/fisiologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Benzilaminas , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacologia , Ciclamos , Modelos Animais de Doenças , Regulação da Expressão Gênica , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Compostos Heterocíclicos/farmacologia , Masculino , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
17.
Front Cell Neurosci ; 10: 279, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994540

RESUMO

Background: Accumulation of amyloid ß (Aß) is one of the main hallmarks of Alzheimer's disease (AD). The enhancement of Aß clearance may provide therapeutic means to restrict AD pathology. The cellular responses to different forms of Aß in monocytic cells are poorly known. We aimed to study whether different forms of Aß induce inflammatory responses in monocytic phagocytes and how Aß may affect monocytic cell survival and function to retain phagocytosis in Aß-laden environment. Methods: Monocytic cells were differentiated from bone marrow hematopoietic stem cells (HSC) in the presence of macrophage-colony stimulating factor. Monocytic cells were stimulated with synthetic Aß42 and intracellular calcium responses were recorded with calcium imaging. The formation of reactive oxygen species (ROS), secretion of cytokines and cell viability were also assessed. Finally, monocytic cells were introduced to native Aß deposits ex vivo and the cellular responses in terms of cell viability, pro-inflammatory activation and phagocytosis were determined. The ability of monocytic cells to phagocytose Aß plaques was determined after intrahippocampal transplantation in vivo. Results: Freshly solubilized Aß induced calcium oscillations, which persisted after removal of the stimulus. After few hours of aggregation, Aß was not able to induce oscillations in monocytic cells. Instead, lipopolysaccharide (LPS) induced calcium responses divergent from Aß-induced response. Furthermore, while LPS induced massive production of pro-inflammatory cytokines, neither synthetic Aß species nor native Aß deposits were able to induce pro-inflammatory activation of monocytic cells, contrary to primary microglia. Finally, monocytic cells retained their viability in the presence of Aß and exhibited phagocytic activity towards native fibrillar Aß deposits and congophilic Aß plaques. Conclusion: Monocytic cells carry diverse cellular responses to Aß and inflammatory stimulus LPS. Even though Aß species cause specific responses in calcium signaling, they completely lack the ability to induce pro-inflammatory phenotype of monocytic cells. Monocytes retain their viability and function in Aß-laden brain.

18.
Exp Cell Res ; 344(2): 229-40, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27090016

RESUMO

The invasion of carcinoma cells is a crucial feature in carcinogenesis. The penetration efficiency not only depends on the cancer cells, but also on the composition of the tumor microenvironment. Our group has developed a 3D invasion assay based on human uterine leiomyoma tissue. Here we tested whether human, porcine, mouse or rat hearts as well as porcine tongue tissues could be similarly used to study carcinoma cell invasion in vitro. Three invasive human oral tongue squamous cell carcinoma (HSC-3, SCC-25 and SCC-15), melanoma (G-361) and ductal breast adenocarcinoma (MDA-MB-231) cell lines, and co-cultures of HSC-3 and carcinoma-associated or normal oral fibroblasts were assayed. Myoma tissue, both native and lyophilized, promoted invasion and growth of the cancer cells. However, the healthy heart or tongue matrices were unable to induce the invasion of any type of cancer cells tested. Moreover, when studied in more detail, small molecular weight fragments derived from heart tissue rinsing media inhibited HSC-3 horizontal migration. Proteome analysis of myoma rinsing media, on the other hand, revealed migration enhancing factors. These results highlight the important role of matrix composition for cancer invasion studies in vitro and further demonstrate the unique properties of human myoma organotypic model.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Membrana Celular/patologia , Movimento Celular , Colágeno/metabolismo , Liofilização , Humanos , Camundongos , Miocárdio/patologia , Mioma/patologia , Invasividade Neoplásica , Ratos , Receptores de Superfície Celular/metabolismo , Solubilidade , Sus scrofa , Língua/patologia
19.
Basic Res Cardiol ; 111(1): 2, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611206

RESUMO

The G protein-coupled apelin receptor regulates important processes of the cardiovascular homeostasis, including cardiac development, cardiac contractility, and vascular tone. Most recently, a novel endogenous peptide ligand for the apelin receptor was identified in zebrafish, and it was named apela/elabela/toddler. The peptide was originally considered as an exclusively embryonic regulator, and so far its function in the adult organism remains elusive. We show here that apela is predominantly expressed in the non-cardiomyocyte fraction in the adult rodent heart. We also provide evidence that apela binds to apelin receptors in the heart. Using isolated adult rat hearts, we demonstrate, that just like the fellow receptor agonist apelin, apela increases cardiac contractility and induces coronary vasodilation already in the nanomolar level. The inotropic effect, as revealed by Western blot analysis, is accompanied by a significant increase in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Pharmacological inhibition of ERK1/2 activation markedly attenuates the apela-induced inotropy. Analysis of samples from infarcted mouse hearts showed that expression of both apela and apelin receptor is induced in failing mouse hearts and correlate with left ventricular ejection fraction. Hence, we conclude that apela is present in the adult heart, is upregulated in post-infarction cardiac remodeling, and increases cardiac contractility in an ERK1/2-dependent manner.


Assuntos
Coração , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento , Animais , Receptores de Apelina , Western Blotting , Modelos Animais de Doenças , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA