Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 22: 794-811, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30766900

RESUMO

The myrtle rust disease, caused by the fungus Austropuccinia psidii, infects a wide range of host species within the Myrtaceae family worldwide. Since its first report in 2013 in New Caledonia, it was found on various types of native environments where Myrtaceae are the dominant or codominant species, as well as in several commercial nurseries. It is now considered as a significant threat to ecosystems biodiversity and Myrtaceae-related economy. The use of predictive molecular markers for resistance against myrtle rust is currently the most cost-effective and ecological approach to control the disease. Such an approach for neo Caledonian endemic Myrtaceae species was not possible because of the lack of genomic resources. The recent advancement in new generation sequencing technologies accompanied with relevant bioinformatics tools now provide new research opportunity for work in non-model organism at the transcriptomic level. The present study focuses on transcriptome analysis on three Myrtaceae species endemic to New Caledonia (Arillastrum gummiferum, Syzygium longifolium and Tristaniopsis glauca) that display contrasting responses to the pathogen (non-infected vs infected). Differential gene expression (DGE) and variant calling analysis were conducted on each species. We combined a dual approach by using 1) the annotated reference genome of a related Myrtaceae species (Eucalyptus grandis) and 2) a de novo transcriptomes of each species.

2.
PLoS One ; 11(12): e0167405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907121

RESUMO

Soil microorganisms play key roles in ecosystem functioning and are known to be influenced by biotic and abiotic factors, such as plant cover or edaphic parameters. New Caledonia, a biodiversity hotspot located in the southwest Pacific, is one-third covered by ultramafic substrates. These types of soils are notably characterised by low nutrient content and high heavy metal concentrations. Ultramafic outcrops harbour diverse vegetation types and remarkable plant diversity. In this study, we aimed to assess soil bacterial and fungal diversity in New Caledonian ultramafic substrates and to determine whether floristic composition, edaphic parameters and geographical factors affect this microbial diversity. Therefore, four plant formation types at two distinct sites were studied. These formations represent different stages in a potential chronosequence. Soil cores, according to a given sampling procedure, were collected to assess microbial diversity using a metagenomic approach, and to characterise the physico-chemical parameters. A botanical inventory was also performed. Our results indicated that microbial richness, composition and abundance were linked to the plant cover type and the dominant plant species. Furthermore, a large proportion of Ascomycota phylum (fungi), mostly in non-rainforest formations, and Planctomycetes phylum (bacteria) in all formations were observed. Interestingly, such patterns could be indicators of past disturbances that occurred on different time scales. Furthermore, the bacteria and fungi were influenced by diverse edaphic parameters as well as by the interplay between these two soil communities. Another striking finding was the existence of a site effect. Differences in microbial communities between geographical locations may be explained by dispersal limitation in the context of the biogeographical island theory. In conclusion, each plant formation at each site possesses is own microbial community resulting from multiple interactions between abiotic and biotic factors.


Assuntos
Ecossistema , Metagenômica , RNA Ribossômico 16S/genética , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Variação Genética , Nova Caledônia
3.
Mol Phylogenet Evol ; 71: 15-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211193

RESUMO

New Caledonia is a remote archipelago of the South-West Pacific, whose flora is rich, distinctive, and disharmonic. The interest of botanists has long been attracted by the spatio-temporal origin of this flora, but little attention has been paid to the modes of colonization and the diversification processes that have led to the archipelago's modern flora. To date, no explosive plant radiation has yet been highlighted for New Caledonia. A dated phylogenetic framework on the second richest New Caledonian genus--Psychotria s.l. and its allied genera (tribes Psychotrieae and Palicoureeae, Rubiaceae; ca. 85 species)--is provided in this study to explore its patterns of colonization and diversification in the archipelago. This study is based on a comprehensive species sampling, two nuclear and four plastid loci. Results show that New Caledonia was colonized four times by Psychotria and its allied genera during the Neogene long after its mid-Eocene re-emergence from the sea. The Pacific clade of Psychotrieae, one of the largest plant diversifications in the Pacific islands and the Indo-Pacific region, is absent from New Caledonia, possibly due to niche competition. Although the four lineages colonized New Caledonia relatively simultaneously during the Neogene, they express different evolutionary histories, as revealed by unevenness in species richness and net diversification rates. The genus Geophila has not diversified on New Caledonia, as a non-endemic single species has been documented in the archipelago. The genus Margaritopsis had a moderate level of diversification (four species) similar to that on other Pacific islands. The Psychotria clade NC1 appears to be a relictual lineage, which probably underwent a drastic extinction, with a narrow ecological habitat and dispersal limitations. The Psychotria clade NC2 is the largest and youngest New Caledonian plant radiation, and has undergone the fastest recorded diversification of any endemic lineage in the archipelago, and could be the result of a 'non-adaptive radiation', originating from Australian rainforests.


Assuntos
Filogenia , Psychotria/genética , Teorema de Bayes , Biodiversidade , Ilhas do Pacífico , Análise de Sequência de DNA
4.
PLoS One ; 7(7): e40699, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808236

RESUMO

Simple sequence repeat (SSR) markers are widely used tools for inferences about genetic diversity, phylogeography and spatial genetic structure. Their applications assume that variation among alleles is essentially caused by an expansion or contraction of the number of repeats and that, accessorily, mutations in the target sequences follow the stepwise mutation model (SMM). Generally speaking, PCR amplicon sizes are used as direct indicators of the number of SSR repeats composing an allele with the data analysis either ignoring the extent of allele size differences or assuming that there is a direct correlation between differences in amplicon size and evolutionary distance. However, without precisely knowing the kind and distribution of polymorphism within an allele (SSR and the associated flanking region (FR) sequences), it is hard to say what kind of evolutionary message is conveyed by such a synthetic descriptor of polymorphism as DNA amplicon size. In this study, we sequenced several SSR alleles in multiple populations of three divergent tree genera and disentangled the types of polymorphisms contained in each portion of the DNA amplicon containing an SSR. The patterns of diversity provided by amplicon size variation, SSR variation itself, insertions/deletions (indels), and single nucleotide polymorphisms (SNPs) observed in the FRs were compared. Amplicon size variation largely reflected SSR repeat number. The amount of variation was as large in FRs as in the SSR itself. The former contributed significantly to the phylogenetic information and sometimes was the main source of differentiation among individuals and populations contained by FR and SSR regions of SSR markers. The presence of mutations occurring at different rates within a marker's sequence offers the opportunity to analyse evolutionary events occurring on various timescales, but at the same time calls for caution in the interpretation of SSR marker data when the distribution of within-locus polymorphism is not known.


Assuntos
Alelos , Repetições de Microssatélites/genética , Filogenia , Sequência de Bases , Loci Gênicos/genética , Genética Populacional , Desequilíbrio de Ligação/genética , Dados de Sequência Molecular , Plantas/genética , Polimorfismo Genético , Alinhamento de Sequência
5.
Mol Ecol ; 15(2): 559-71, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16448421

RESUMO

The extent of gene dispersal is a fundamental factor of the population and evolutionary dynamics of tropical tree species, but directly monitoring seed and pollen movement is a difficult task. However, indirect estimates of historical gene dispersal can be obtained from the fine-scale spatial genetic structure of populations at drift-dispersal equilibrium. Using an approach that is based on the slope of the regression of pairwise kinship coefficients on spatial distance and estimates of the effective population density, we compare indirect gene dispersal estimates of sympatric populations of 10 tropical tree species. We re-analysed 26 data sets consisting of mapped allozyme, SSR (simple sequence repeat), RAPD (random amplified polymorphic DNA) or AFLP (amplified fragment length polymorphism) genotypes from two rainforest sites in French Guiana. Gene dispersal estimates were obtained for at least one marker in each species, although the estimation procedure failed under insufficient marker polymorphism, limited sample size, or inappropriate sampling area. Estimates generally suffered low precision and were affected by assumptions regarding the effective population density. Averaging estimates over data sets, the extent of gene dispersal ranged from 150 m to 1200 m according to species. Smaller gene dispersal estimates were obtained in species with heavy diaspores, which are presumably not well dispersed, and in populations with high local adult density. We suggest that limited seed dispersal could indirectly limit effective pollen dispersal by creating higher local tree densities, thereby increasing the positive correlation between pollen and seed dispersal distances. We discuss the potential and limitations of our indirect estimation procedure and suggest guidelines for future studies.


Assuntos
Variação Genética , Árvores/genética , Guiana Francesa , Marcadores Genéticos , Repetições de Microssatélites , Modelos Genéticos , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico , Clima Tropical
6.
Evolution ; 57(12): 2753-64, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14761054

RESUMO

Drier periods from the late Pleistocene and early Holocene have been hypothesized to have caused the disappearance of various rainforest species over large geographical areas in South America and restricted the extant populations to mesic sites. Subsequent improvement in climatic conditions has been associated with recolonization. Changes in population size associated with these extinction-recolonization events should have affected genetic diversity within species. However, these historical hypotheses and their genetic consequences have rarely been tested in South America. Here, we examine the diversity of the chloroplast and nuclear genomes in a Neotropical rainforest tree species, Vouacapoua americana (Leguminosae, Caesalpinioideae) in French Guiana. The chloroplast diversity was analyzed using a polymerase chain reaction-restriction fragment length polymorphism method (six pairs of primers) in 29 populations distributed over most of French Guiana, and a subset of 17 populations was also analyzed at nine polymorphic microsatellite loci. To determine whether this species has experienced extinction-recolonization, we sampled populations in areas supposedly not or only slightly affected by climatic changes, where the populations would not have experienced frequent extinction, and in areas that appear to have been recently recolonized. In the putatively recolonized areas, we found patches of several thousands of hectares homogeneous for chloroplast variation that can be interpreted as the effect of recolonization processes from several geographical origins. In addition, we observed that, for both chloroplast and nuclear genomes, the populations in newly recolonized areas exhibited a significantly smaller allelic richness than others. Controlling for geographic distance, we also detected a significant correlation between chloroplast and nuclear population differentiation. This result indicates a cytonuclear disequilibrium that can be interpreted as a historical signal of a genetic divergence between fragmented populations. In conclusion, the spatial genetic structure of contemporary V. americana populations shows evidence that this species has experienced large extinction-recolonization events, which were possibly caused by past climatic change.


Assuntos
Clima , Fabaceae/genética , Variação Genética , Modelos Genéticos , Árvores , DNA de Cloroplastos/genética , Fabaceae/fisiologia , Guiana Francesa , Frequência do Gene , Geografia , Polimorfismo de Fragmento de Restrição , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...