Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(1): 44-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153386

RESUMO

In the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms (i.e., those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica. As DNA is a strong definitive biosignature, given that there is no known abiotic chemistry that can polymerize nucleobases, we investigated DNA detection with MinION sequencing in Antarctic cryptoendoliths after an ∼58-sol exposure in MARTE, a Mars environmental chamber capable of simulating martian temperature, pressure, humidity, ultraviolet (UV) radiation, and atmospheric composition, in conjunction with protein and lipid detection. The MARTE conditions resulted in changes in community composition and DNA, proteins, and cell membrane-derived lipids remained detectable postexposure. Of the multitude of extreme environmental conditions on Mars, UV radiation (specifically UVC) is the most destructive to both cells and DNA. As such, we further investigated if a UVC exposure corresponding to ∼278 martian years would impede DNA detection via MinION sequencing. The MinION was able to successfully detect and sequence DNA after this UVC radiation exposure, suggesting its utility for life detection in future astrobiology missions focused on finding relatively recently exposed biomarkers inside possible martian refugia.


Assuntos
Marte , Mustelidae , Animais , Meio Ambiente Extraterreno , Regiões Antárticas , Exobiologia , DNA
2.
Astrobiology ; 23(7): 756-768, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37126945

RESUMO

The search for extant microbial life will be a major focus of future astrobiology missions; however, no direct extant life detection instrumentation is included in current missions to Mars. In this study, we developed the semiautomated MicroLife detection platform that collects and processes environmental samples, detects biosignatures, and characterizes microbial activity. This platform is composed of a drill for sample collection, a redox dye colorimetric system for microbial metabolic activity detection and assessment (µMAMA [microfluidics Microbial Activity MicroAssay]), and a MinION sequencer for biosignature detection and characterization of microbial communities. The MicroLife platform was field-tested on White Glacier on Axel Heiberg Island in the Canadian high Arctic, with two extracted ice cores. The µMAMA successfully detected microbial metabolism from the ice cores within 1 day of incubation. The MinION sequencing of the ice cores and the positive µMAMA card identified a microbial community consistent with cold and oligotrophic environments. Furthermore, isolation and identification of microbial isolates from the µMAMA card corroborated the MinION sequencing. Together, these analyses support the MicroLife platform's efficacy in identifying microbes natively present in cryoenvironments and detecting their metabolic activity. Given our MicroLife platform's size and low energy requirements, it could be incorporated into a future landed platform or rovers for life detection.


Assuntos
Exobiologia , Camada de Gelo , Canadá , Regiões Árticas
3.
ISME J ; 16(7): 1798-1808, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396347

RESUMO

Lost Hammer Spring, located in the High Arctic of Nunavut, Canada, is one of the coldest and saltiest terrestrial springs discovered to date. It perennially discharges anoxic (<1 ppm dissolved oxygen), sub-zero (~-5 °C), and hypersaline (~24% salinity) brines from the subsurface through up to 600 m of permafrost. The sediment is sulfate-rich (1 M) and continually emits gases composed primarily of methane (~50%), making Lost Hammer the coldest known terrestrial methane seep and an analog to extraterrestrial habits on Mars, Europa, and Enceladus. A multi-omics approach utilizing metagenome, metatranscriptome, and single-amplified genome sequencing revealed a rare surface terrestrial habitat supporting a predominantly lithoautotrophic active microbial community driven in part by sulfide-oxidizing Gammaproteobacteria scavenging trace oxygen. Genomes from active anaerobic methane-oxidizing archaea (ANME-1) showed evidence of putative metabolic flexibility and hypersaline and cold adaptations. Evidence of anaerobic heterotrophic and fermentative lifestyles were found in candidate phyla DPANN archaea and CG03 bacteria genomes. Our results demonstrate Mars-relevant metabolisms including sulfide oxidation, sulfate reduction, anaerobic oxidation of methane, and oxidation of trace gases (H2, CO2) detected under anoxic, hypersaline, and sub-zero ambient conditions, providing evidence that similar extant microbial life could potentially survive in similar habitats on Mars.


Assuntos
Metano , Microbiota , Anaerobiose , Archaea/genética , Archaea/metabolismo , Gases/metabolismo , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Oxirredução , Oxigênio/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Sulfetos/metabolismo
4.
Astrobiology ; 22(1): 87-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34962136

RESUMO

The utilization of nanopore technologies for the detection of organic biogenic compounds has garnered significant focus in recent years. Oxford Nanopore Technologies' (ONT) MinION instrument, which can detect and sequence nucleic acids (NAs), is one such example. These technologies have much promise for unambiguous life detection but require significant development in terms of methods for extraction and preparation of NAs for biosignature detection and their feasibility for use in astrobiology-focused field missions. In this study, we tested pre-existing, automated, or semiautomated NA extraction technologies, coupled with automated ONT VolTRAX NA sample preparation, and verification with Nanopore MinION sequencing. All of the extraction systems tested (SuperFastPrep2, ClaremontX1, and SOLID-Sample Preparation Unit) showed potential for extracting DNA from Canadian High Arctic environments analogous to Mars, Europa, and Enceladus, which could subsequently be detected and sequenced with the MinION. However, they differed with regard to efficacy, yield, purity, and sequencing and annotation quality. Overall, bead beating-based systems performed the best for these parameters. In addition, we showed that the MinION could sequence unpurified DNA contained in crude cell lysates. This is valuable from an astrobiology perspective because purification steps are time-consuming and complicate the requirements for an automated extraction and life detection system. Our results indicate that semiautomated NA extraction and preparation technologies hold much promise, and with increased optimization and automation could be coupled to a larger platform incorporating nanopore detection and sequencing of NAs for life detection applications.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Ácidos Nucleicos , Canadá , Exobiologia , Análise de Sequência de DNA/métodos
5.
Sci Rep ; 11(1): 21041, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702846

RESUMO

Genome reconstruction from metagenomes enables detailed study of individual community members, their metabolisms, and their survival strategies. Obtaining high quality metagenome-assembled genomes (MAGs) is particularly valuable in extreme environments like sea ice cryoconites, where the native consortia are recalcitrant to culture and strong astrobiology analogues. We evaluated three separate approaches for MAG generation from Allen Bay, Nunavut sea ice cryoconites-HiSeq-only, MinION-only, and hybrid (HiSeq + MinION)-where field MinION sequencing yielded a reliable metagenome. The hybrid assembly produced longer contigs, more coding sequences, and more total MAGs, revealing a microbial community dominated by Bacteroidetes. The hybrid MAGs also had the highest completeness, lowest contamination, and highest N50. A putatively novel species of Octadecabacter is among the hybrid MAGs produced, containing the genus's only known instances of genomic potential for nitrate reduction, denitrification, sulfate reduction, and fermentation. This study shows that the inclusion of MinION reads in traditional short read datasets leads to higher quality metagenomes and MAGs for more accurate descriptions of novel microorganisms in this extreme, transient habitat and has produced the first hybrid MAGs from an extreme environment.


Assuntos
Camada de Gelo/microbiologia , Metagenoma , Metagenômica , Microbiota/genética
6.
Astrobiology ; 20(3): 375-393, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31976742

RESUMO

No instrument capable of direct life detection has been included on a mission payload to Mars since NASA's Viking missions in the 1970s. This prevents us from discovering whether life is or ever was present on Mars. DNA is an ideal target biosignature since it is unambiguous, nonspecific, and readily detectable with nanopore sequencing. Here, we present a proof-of-concept utilization of the Oxford Nanopore Technologies (ONT) MinION sequencer for direct life detection and show how it can complement results from established space mission instruments. We used nanopore sequencing data from the MinION to detect and characterize the microbial life in a set of paleochannels near Hanksville, UT, with supporting data from X-ray diffraction, reflectance spectroscopy, Raman spectroscopy, and Life Detector Chip (LDChip) microarray immunoassay analyses. These paleochannels are analogs to martian sinuous ridges. The MinION-generated metagenomes reveal a rich microbial community dominated by bacteria and containing radioresistant, psychrophilic, and halophilic taxa. With spectral data and LDChip immunoassays, these metagenomes were linked to the surrounding Mars analog environment and potential metabolisms (e.g., methane production and perchlorate reduction). This shows a high degree of synergy between these techniques for detecting and characterizing biosignatures. We also resolved a prospective lower limit of ∼0.001 ng of DNA required for successful sequencing. This work represents the first determination of the MinION's DNA detection limits beyond ONT recommendations and the first whole metagenome analysis of a sinuous ridge analog.


Assuntos
Bactérias/metabolismo , DNA Ambiental/isolamento & purificação , Exobiologia/métodos , Marte , Análise de Sequência de DNA/métodos , Bactérias/genética , Meio Ambiente Extraterreno , Redes e Vias Metabólicas/genética , Metagenoma , Metano/metabolismo , Nanoporos , Percloratos/metabolismo , Utah
7.
Front Microbiol ; 11: 590736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391207

RESUMO

Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...