Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 85: 102264, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37925932

RESUMO

The keratin cytoskeleton protects epithelia against mechanical, nonmechanical, and physical stresses, and participates in multiple signaling pathways that regulate cell integrity and resilience. Keratin gene mutations cause multiple rare monoallelic epithelial diseases termed keratinopathies, including the skin diseases Epidermolysis Bullosa Simplex (EBS) and Pachyonychia Congenita (PC), with limited available therapies. The disease-related keratin mutations trigger posttranslational modifications (PTMs) in keratins and their associated proteins that can aggravate the disease. Recent findings of drug high-throughput screening have led to the identification of compounds that may be repurposed, since they are used for other human diseases, to treat keratinopathies. These drugs target unique PTM pathways and sites, including phosphorylation and acetylation of keratins and their associated proteins, and have shed insights into keratin regulation and interactions. They also offer the prospect of testing the use of drug mixtures, with the long view of possible beneficial human use coupled with increased efficacy and lower side effects.


Assuntos
Epidermólise Bolhosa Simples , Queratinas , Humanos , Queratinas/genética , Queratinas/metabolismo , Citoesqueleto/metabolismo , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Mutação , Processamento de Proteína Pós-Traducional
2.
Curr Biol ; 33(19): R1002-R1004, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37816316

RESUMO

A new study reports that the extracellular matrix component laminin-111 shields the nucleus from actin-mediated forces by engaging the keratin cytoskeleton. Thus, matrix composition represents a means by which tissues can protect cell nuclei from mechanical damage.


Assuntos
Actinas , Citoesqueleto , Fenômenos Fisiológicos Celulares , Microtúbulos , Biofísica , Núcleo Celular , Matriz Extracelular , Estresse Mecânico
4.
Curr Opin Cell Biol ; 85: 102236, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37708744

RESUMO

We suggest that the human body can be viewed as of textile nature whose fabric consists of interconnected fiber systems. These fiber systems form highly dynamic scaffolds, which respond to environmental changes at different temporal and spatial scales. This is especially relevant at sites where epithelia border on connective tissue regions that are exposed to dynamic microenvironments. We propose that the enormous heterogeneity and adaptability of epithelia are based on a "keratin code", which results from the cell-specific expression and posttranslational modification of keratin isotypes. It thereby defines unique cytoskeletal intermediate filament networks that are coupled across cells and to the correspondingly heterogeneous fibers of the underlying extracellular matrix. The resulting fabric confers unique local properties.


Assuntos
Citoesqueleto , Queratinas , Humanos , Queratinas/metabolismo , Citoesqueleto/metabolismo , Epitélio/metabolismo , Filamentos Intermediários/metabolismo , Têxteis
6.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37485877

RESUMO

Keratin (K) and other intermediate filament (IF) protein mutations at conserved arginines disrupt keratin filaments into aggregates and cause human epidermolysis bullosa simplex (EBS; K14-R125C) or predispose to mouse liver injury (K18-R90C). The challenge for more than 70 IF-associated diseases is the lack of clinically utilized IF-targeted therapies. We used high-throughput drug screening to identify compounds that normalized mutation-triggered keratin filament disruption. Parthenolide, a plant sesquiterpene lactone, dramatically reversed keratin filament disruption and protected cells and mice expressing K18-R90C from apoptosis. K18-R90C became hyperacetylated compared with K18-WT and treatment with parthenolide normalized K18 acetylation. Parthenolide upregulated the NAD-dependent SIRT2, and increased SIRT2-keratin association. SIRT2 knockdown or pharmacologic inhibition blocked the parthenolide effect, while site-specific Lys-to-Arg mutation of keratin acetylation sites normalized K18-R90C filaments. Treatment of K18-R90C-expressing cells and mice with nicotinamide mononucleotide had a parthenolide-like protective effect. In 2 human K18 variants that associate with human fatal drug-induced liver injury, parthenolide protected K18-D89H- but not K8-K393R-induced filament disruption and cell death. Importantly, parthenolide normalized K14-R125C-mediated filament disruption in keratinocytes and inhibited dispase-triggered keratinocyte sheet fragmentation and Fas-mediated apoptosis. Therefore, keratin acetylation may provide a novel therapeutic target for some keratin-associated diseases.


Assuntos
Queratinas , Sirtuína 2 , Animais , Humanos , Camundongos , Proteínas de Filamentos Intermediários , Queratinas/genética , Queratinas/metabolismo , Mutação , Sirtuína 2/genética
8.
Cells ; 11(19)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36231117

RESUMO

Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile, but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis, supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of epidermal differentiation and KRT1.


Assuntos
Células Epidérmicas , Queratinócitos , Criança , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Humanos , Queratina-1/genética , Queratina-1/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
J Invest Dermatol ; 142(12): 3282-3293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35691363

RESUMO

Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.


Assuntos
Epidermólise Bolhosa Simples , Humanos , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Queratinas/metabolismo , Estaurosporina/metabolismo , Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Mutação
10.
Cell Mol Life Sci ; 79(5): 223, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380280

RESUMO

Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.


Assuntos
Desmossomos , Queratinas , Adesão Celular , Citoesqueleto/metabolismo , Desmogleínas/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo
11.
EMBO J ; 41(7): e108747, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35266581

RESUMO

Mesoderm arises at gastrulation and contributes to both the mouse embryo proper and its extra-embryonic membranes. Two-photon live imaging of embryos bearing a keratin reporter allowed recording filament nucleation and elongation in the extra-embryonic region. Upon separation of amniotic and exocoelomic cavities, keratin 8 formed apical cables co-aligned across multiple cells in the amnion, allantois, and blood islands. An influence of substrate rigidity and composition on cell behavior and keratin content was observed in mesoderm explants. Embryos lacking all keratin filaments displayed a deflated extra-embryonic cavity, a narrow thick amnion, and a short allantois. Single-cell RNA sequencing of sorted mesoderm cells and micro-dissected amnion, chorion, and allantois, provided an atlas of transcriptomes with germ layer and regional information. It defined the cytoskeleton and adhesion expression profile of mesoderm-derived keratin 8-enriched cells lining the exocoelomic cavity. Those findings indicate a novel role for keratin filaments in the expansion of extra-embryonic structures and suggest mechanisms of mesoderm adaptation to the environment.


Assuntos
Gastrulação , Mesoderma , Animais , Embrião de Mamíferos , Membranas Extraembrionárias , Queratinas/genética , Queratinas/metabolismo , Mesoderma/metabolismo , Camundongos
13.
J Invest Dermatol ; 142(2): 272-274, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34799122

RESUMO

Single gene disorders are ideally suited to establish robust genotype‒phenotype correlations and provide excellent opportunities to understand molecular pathomechanisms with relevance to complex disorders. The observation that patients diagnosed with the same causative mutation can present with phenotypic disease variability illustrates the significant role of disease modifiers and warns against oversimplification. In a new article in the Journal of Investigative Dermatology, Zimmer et al. (2021) analyze two mutations located in the desmoglein (DSG) 1 transmembrane domain (TMD) and find that both mutants fail to assemble into desmosomes owing to reduced membrane trafficking and lipid raft targeting. One mutation maintained normal protein expression levels and turnover relative to those of wild-type (WT) DSG1, and behaved as a dominant negative. The second mutant showed reduced stability and increased turnover compared with WT DSG1 as well as reduced desmosome size and abundance. A full understanding of the TMD of DSG1 requires cell biological approaches, underscoring the value of cell biology in biomedical research in general.


Assuntos
Desmogleína 1 , Desmossomos , Desmogleína 1/genética , Desmossomos/genética , Humanos , Microdomínios da Membrana , Mutação
14.
Elife ; 102021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323216

RESUMO

Keratin intermediate filaments are an essential and major component of the cytoskeleton in epithelial cells. They form a stable yet dynamic filamentous network extending from the nucleus to the cell periphery, which provides resistance to mechanical stresses. Mutations in keratin genes are related to a variety of epithelial tissue diseases. Despite their importance, the molecular structure of keratin filaments remains largely unknown. In this study, we analyzed the structure of keratin 5/keratin 14 filaments within ghost mouse keratinocytes by cryo-electron microscopy and cryo-electron tomography. By averaging a large number of keratin segments, we have gained insights into the helical architecture of the filaments. Two-dimensional classification revealed profound variations in the diameter of keratin filaments and their subunit organization. Computational reconstitution of filaments of substantial length uncovered a high degree of internal heterogeneity along single filaments, which can contain regions of helical symmetry, regions with less symmetry and regions with significant diameter fluctuations. Cross-section views of filaments revealed that keratins form hollow cylinders consisting of multiple protofilaments, with an electron dense core located in the center of the filament. These findings shed light on the complex and remarkable heterogenic architecture of keratin filaments, suggesting that they are highly flexible, dynamic cytoskeletal structures.


Assuntos
Microscopia Crioeletrônica/métodos , Queratinas/análise , Queratinas/química , Animais , Citoesqueleto/fisiologia , Células Epiteliais/química , Filamentos Intermediários/ultraestrutura , Queratinócitos/ultraestrutura , Queratinas/classificação , Queratinas/ultraestrutura , Camundongos
15.
Nat Rev Dis Primers ; 6(1): 78, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973163

RESUMO

Epidermolysis bullosa (EB) is an inherited, heterogeneous group of rare genetic dermatoses characterized by mucocutaneous fragility and blister formation, inducible by often minimal trauma. A broad phenotypic spectrum has been described, with potentially severe extracutaneous manifestations, morbidity and mortality. Over 30 subtypes are recognized, grouped into four major categories, based predominantly on the plane of cleavage within the skin and reflecting the underlying molecular abnormality: EB simplex, junctional EB, dystrophic EB and Kindler EB. The study of EB has led to seminal advances in our understanding of cutaneous biology. To date, pathogenetic mutations in 16 distinct genes have been implicated in EB, encoding proteins influencing cellular integrity and adhesion. Precise diagnosis is reliant on correlating clinical, electron microscopic and immunohistological features with mutational analyses. In the absence of curative treatment, multidisciplinary care is targeted towards minimizing the risk of blister formation, wound care, symptom relief and specific complications, the most feared of which - and also the leading cause of mortality - is squamous cell carcinoma. Preclinical advances in cell-based, protein replacement and gene therapies are paving the way for clinical successes with gene correction, raising hopes amongst patients and clinicians worldwide.


Assuntos
Epidermólise Bolhosa/diagnóstico , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/fisiopatologia , Humanos , Incidência , Pele/patologia , Pele/fisiopatologia
16.
J Cell Sci ; 133(14)2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32616561

RESUMO

Keratin intermediate filament (IF) proteins constitute the major cytoskeletal components in epithelial cells. Missense mutations in keratin 5 (K5; also known as KRT5) or keratin 14 (K14; also known as KRT14), highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS). EBS-associated mutations disrupt keratin networks and change keratinocyte mechanics; however, molecular mechanisms by which mutations shape EBS pathology remain incompletely understood. Here, we demonstrate that, in contrast to keratin-deficient keratinocytes, cells expressing K14R125C, a mutation that causes severe EBS, generate lower traction forces, accompanied by immature focal adhesions with an altered cellular distribution. Furthermore, mutant keratinocytes display reduced directionality during collective migration. Notably, RhoA activity is downregulated in human EBS keratinocytes, and Rho activation rescues stiffness-dependent cell-extracellular matrix (ECM) adhesion formation of EBS keratinocytes. Collectively, our results strongly suggest that intact keratin IF networks regulate mechanotransduction through a Rho signaling pathway upstream of cell-ECM adhesion formation and organized cell migration. Our findings provide insights into the underlying pathophysiology of EBS.This article has an associated First Person interview with the first author of the paper.


Assuntos
Epidermólise Bolhosa Simples , Queratinas , Citoesqueleto/metabolismo , Epidermólise Bolhosa Simples/genética , Humanos , Queratinas/genética , Queratinas/metabolismo , Mecanotransdução Celular , Mutação/genética , Tração
17.
Eur J Hum Genet ; 28(9): 1218-1230, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32066935

RESUMO

Progeroid syndromes are a group of rare genetic disorders, which mimic natural aging. Unraveling the molecular defects in such conditions could impact our understanding of age-related syndromes such as Alzheimer's or cardiovascular diseases. Here we report a de novo heterozygous missense variant in the intermediate filament vimentin (c.1160 T > C; p.(Leu387Pro)) causing a multisystem disorder associated with frontonasal dysostosis and premature aging in a 39-year-old individual. Human vimentin p.(Leu387Pro) expression in zebrafish perturbed body fat distribution, and craniofacial and peripheral nervous system development. In addition, studies in patient-derived and transfected cells revealed that the variant affects vimentin turnover and its ability to form filaments in the absence of wild-type vimentin. Vimentin p.(Leu387Pro) expression diminished the amount of peripilin and reduced lipid accumulation in differentiating adipocytes, recapitulating key patient's features in vivo and in vitro. Our data highlight the function of vimentin during development and suggest its contribution to natural aging.


Assuntos
Progéria/genética , Vimentina/genética , Células 3T3-L1 , Adipócitos/metabolismo , Adiposidade , Adulto , Animais , Células Cultivadas , Genes Dominantes , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células MCF-7 , Masculino , Camundongos , Mutação , Neurogênese , Perilipina-1/metabolismo , Progéria/patologia , Vimentina/metabolismo , Peixe-Zebra
19.
Cell Mol Life Sci ; 77(21): 4397-4411, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31912195

RESUMO

The isotype-specific composition of the keratin cytoskeleton is important for strong adhesion, force resilience, and barrier function of the epidermis. However, the mechanisms by which keratins regulate these functions are still incompletely understood. In this study, the role and significance of the keratin network for mechanical integrity, force transmission, and barrier formation were analyzed in murine keratinocytes. Following the time-course of single-cell wound closure, wild-type (WT) cells slowly closed the gap in a collective fashion involving tightly connected neighboring cells. In contrast, the mechanical response of neighboring cells was compromised in keratin-deficient cells, causing an increased wound area initially and an inefficient overall wound closure. Furthermore, the loss of the keratin network led to impaired, fragmented cell-cell junctions, and triggered a profound change in the overall cellular actomyosin architecture. Electric cell-substrate impedance sensing of cell junctions revealed a dysfunctional barrier in knockout (Kty-/-) cells compared to WT cells. These findings demonstrate that Kty-/- cells display a novel phenotype characterized by loss of mechanocoupling and failure to form a functional barrier. Re-expression of K5/K14 rescued the barrier defect to a significant extent and reestablished the mechanocoupling with remaining discrepancies likely due to the low abundance of keratins in that setting. Our study reveals the major role of the keratin network for mechanical homeostasis and barrier functionality in keratinocyte layers.


Assuntos
Queratinócitos/citologia , Queratinas/metabolismo , Animais , Fenômenos Biomecânicos , Linhagem Celular , Epiderme/metabolismo , Epiderme/ultraestrutura , Deleção de Genes , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Queratinócitos/metabolismo , Queratinas/genética , Queratinas/ultraestrutura , Camundongos , Cicatrização
20.
J Anat ; 236(5): 906-915, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31863467

RESUMO

The human interosseous membrane (IOM) is a fundamental stabilizer during forearm rotation. To investigate the dynamic aspects of forearm stability, we analyzed sensory nerve endings in the IOM. The distal oblique bundle (DOB), the distal accessory band (DAB), the central band (CB), the proximal accessory band (PAB), the dorsal oblique accessory cord (DOAC) and the proximal oblique cord (POC) were dissected from 11 human cadaver forearms. Sensory nerve endings were analyzed at two levels per specimen as total cell amount/mm2 after immunofluorescence staining with low-affinity neurotrophin receptor p75, protein gene product 9.5, S-100 protein and 4',6-diamidino-2-phenylindole on an Apotome microscope, according to Freeman and Wyke's classification. Sensory nerve endings were significantly more commonly found to be equally distributed throughout the structures, rather than being epifascicular, interstitial, or close to the insertion into bone (P ≤ 0.001, respectively). Free nerve endings were the predominant mechanoreceptor in all six structures, with highest density in the DOB, followed by the POC (P ≤ 0.0001, respectively). The DOB had the highest density of Pacini corpuscles. The DOAC and CB had the lowest amounts of sensory innervation. The high density of sensory corpuscles in the DOB, PAB and POC indicate that proprioceptive control of the compressive and directional muscular forces acting on the distal and proximal radioulnar joints is monitored by the DOB, PAB and POC, respectively, due to their closed proximity to both joints, whereas the central parts of the IOM act as structures of passive restraint.


Assuntos
Antebraço/inervação , Membrana Interóssea/metabolismo , Células Receptoras Sensoriais/metabolismo , Idoso , Fenômenos Biomecânicos/fisiologia , Feminino , Imunofluorescência , Humanos , Masculino , Propriocepção/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...