Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Res ; 4: 100121, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34085050

RESUMO

ß-amylase is a thermostable enzyme that hydrolyses starch during cooking of sweetpotato (Ipomoea batatas) storage roots, thereby influencing eating quality. Its activity is known to vary amongst genotypes but the genetic diversity of the beta-amylase gene (Amyß) is not well studied. Amyß has a highly conserved region between exon V and VI, forming part of the enzyme's active site. To determine the gene diversity, a 2.3 kb fragment, including the conserved region of the Amyß gene was sequenced from 25 sweetpotato genotypes. The effect of sequence variation on gene expression, enzyme activity, and firmness in cooked roots was determined. Six genotypes carrying several SNPs within exon V, linked with an AT or ATGATA insertion in intron V were unique and clustered together. The genotypes also shared an A336E substitution in the amino acid sequence, eight residues upstream of a substrate-binding Thr344. The genotypes carrying this allele exhibited low gene expression and low enzyme activity. Enzyme activity was negatively correlated with firmness (R = -0.42) in cooked roots. This is the first report of such an allele, associated with low enzyme activity. These results suggest that genetic variation within the AmyB locus can be utilized to develop markers for firmness in sweetpotato breeding.

2.
Int J Infect Dis ; 95: 413-420, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32276045

RESUMO

BACKGROUND: Influenza viruses evolve rapidly and cause regular seasonal epidemics in humans challenging effective vaccination. The virus surface HA glycoprotein is the primary target for the host immune response. Here, we investigated the vaccine efficacy and evolution patterns of human influenza A/H3N2 viruses that circulated in Kenyan in the period before and after the 2009 A/H1N1 pandemic, targeting the HA1 domain. MATERIALS AND METHODS: A hundred and fifteen HA sequences of Kenyan virus viruses were analyzed relative to the corresponding WHO vaccine reference strains using bioinformatics approaches. RESULTS: Our analyses revealed varied amino acid substitutions at all the five antigenic sites (A-E) of the HA1 domain, with a majority the changes occurring at sites A and B. The Kenyan A/H3N2 viruses isolated during 2007/2008 seasons belonged to A/Brisbane/10/2007-like viruses lineage, while those circulating in 2009-2012 belonged to the lineage of A/Victoria/361/2011-like viruses. The 2013 viruses clustered in clade 3C.3 of the A/Samara/73/2013-like viruses. The mean evolutionary rate of the A/H3N2 viruses analyzed in the study was at 4.17×10-3 (95% HPD=3.09×10-3-5.31×10-3) nucleotide substitutions per site per year, whereas the TMRCA was estimated at 11.18 (95% HPD=9.00-14.12) years ago from 2013. The prediction of vaccine efficacy revealed modest vaccine efficaciousness during 2008, and 2010 influenza seasons, whilst sub-optimal effectiveness was registered in 2007, 2009, 2012 and 2013. Further, the overall selective pressure acting on the HA1 domain was estimated at 0.56 (ω<1), suggesting that a majority of codon sites in the HA1 epitopes were evolving under purifying selection. CONCLUSIONS: Generally, our results highlight the genetic plasticity of A/H3N2 viruses and reveal considerable disparity in vaccine efficaciousness against the A/H3N2 viruses that circulated in Kenya, specifically during 2007, 2009, 2012, and 2013 influenza seasons. Our findings underscore the importance and need for consistent surveillance and molecular characterization of influenza viruses, to inform decision making and enhance early of detection of strains with epidemic/pandemic potential as well as benefit in guiding decisions regarding the appropriate annual influenza vaccine formulations.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Substituição de Aminoácidos , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Quênia , Filogenia , Domínios Proteicos/imunologia , Estações do Ano
3.
Artigo em Inglês | MEDLINE | ID: mdl-31346474

RESUMO

BACKGROUND: Diarrhea is a serious concern worldwide, especially in developing countries. Rotavirus is implicated in approximately 400,000 infant deaths annually. It is highly contagious elevating the risk of outbreaks especially in enclosed settings such as daycare centers, hospitals, and boarding schools. Reliable testing methods are critical for early detection of infections, better clinical management, pathogen surveillance and evaluation of interventions such as vaccines. Enzyme immunoassays have proved to be reliable and practical in most settings; however, newer multiplex reverse transcription polymerase assays have been introduced in the Kenya market but have not been evaluated locally. METHODS: Stool samples collected from an ongoing Surveillance of Enteric Pathogens Causing diarrheal illness in Kenya (EPS) study were used to compare an established enzyme immunoassay, Premier™ Rotaclone® (Meridian Bioscience, Cincinnati, Ohio, U.S.A.), that can only detect group A rotavirus against a novel multiplex reverse transcription polymerase chain reaction kit, Seeplex® Diarrhea-V ACE Detection (Seegene, Seoul, Republic of Korea), that can detect rotavirus, astrovirus, adenovirus, and norovirus genogroups I and II. Detection frequency, sensitivity, specificity, turnaround time, and cost were compared to determine the suitability of each assay for clinical work in austere settings versus public health work in well-funded institutes in Kenya. RESULTS: The Premier™ Rotaclone® kit had a detection frequency of 11.2%, sensitivity of 77.8%, specificity of 100%, turnaround time of 93 min and an average cost per sample of 13.33 United States dollars (USD). The Seeplex® Diarrhea-V ACE Detection kit had a detection frequency of 16.0%, sensitivity of 100%, specificity of 98.1%, turnaround time of 359 min and an average cost per samples 32.74 United States dollars respectively. The detection frequency sensitivity and specificity of the Seeplex® Diarrhea-V ACE Detection kit mentioned above are for rotavirus only. CONCLUSIONS: The higher sensitivity and multiplex nature of the Seeplex® Diarrhea-V ACE Detection kit make it suitable for surveillance of enteric viruses circulating in Kenya. However, its higher cost, longer turnaround time and complexity favor well-resourced clinical labs and research applications. The Premier™ Rotaclone®, on the other hand, had a higher specificity, shorter turnaround time, and lower cost making it more attractive for clinical work in low complexity labs in austere regions of the country. It is important to continuously evaluate assay platforms' performance, operational cost, turnaround time, and usability in different settings so as to ensure quality results that are useful to the patients and public health practitioners.

4.
Adv Bioinformatics ; 2018: 7963401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849611

RESUMO

Ticks cause approximately $17-19 billion economic losses to the livestock industry globally. Development of recombinant antitick vaccine is greatly hindered by insufficient knowledge and understanding of proteins expressed by ticks. Ticks secrete immunosuppressant proteins that modulate the host's immune system during blood feeding; these molecules could be a target for antivector vaccine development. Recombinant p36, a 36 kDa immunosuppressor from the saliva of female Dermacentor andersoni, suppresses T-lymphocytes proliferation in vitro. To identify potential unique structural and dynamic properties responsible for the immunosuppressive function of p36 proteins, this study utilized bioinformatic tool to characterize and model structure of D. andersoni p36 protein. Evaluation of p36 protein family as suitable vaccine antigens predicted a p36 homolog in Rhipicephalus appendiculatus, the tick vector of East Coast fever, with an antigenicity score of 0.7701 that compares well with that of Bm86 (0.7681), the protein antigen that constitute commercial tick vaccine Tickgard™. Ab initio modeling of the D. andersoni p36 protein yielded a 3D structure that predicted conserved antigenic region, which has potential of binding immunomodulating ligands including glycerol and lactose, found located within exposed loop, suggesting a likely role in immunosuppressive function of tick p36 proteins. Laboratory confirmation of these preliminary results is necessary in future studies.

5.
Wellcome Open Res ; 2: 44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29946569

RESUMO

Background: The human malaria parasite Plasmodium falciparum has evolved complex drug evasion mechanisms to all available antimalarials. To date, the combination of amodiaquine-artesunate is among the drug of choice for treatment of uncomplicated malaria. In this combination, a short acting, artesunate is partnered with long acting, amodiaquine for which resistance may emerge rapidly especially in high transmission settings. Here, we used a rodent malaria parasite Plasmodium berghei ANKA as a surrogate of P. falciparum to investigate the mechanisms of amodiaquine resistance. Methods: We used serial technique to select amodiaquine resistance by submitting the parasites to continuous amodiaquine pressure. We then employed the 4-Day Suppressive Test to monitor emergence of resistance and determine the cross-resistance profiles. Finally, we genotyped the resistant parasite by PCR amplification, sequencing and relative quantitation of mRNA transcript of targeted genes. Results: Submission of P. berghei ANKA to amodiaquine pressure yielded resistant parasite within thirty-six passages. The effective dosage that reduced 90% of parasitaemia (ED 90) of sensitive line and resistant line were 4.29mg/kg and 19.13mg/kg, respectively. After freezing at -80ºC for one month, the resistant parasite remained stable with an ED 90 of 18.22mg/kg. Amodiaquine resistant parasites are also resistant to chloroquine (6fold), artemether (10fold), primaquine (5fold), piperaquine (2fold) and lumefantrine (3fold). Sequence analysis of Plasmodium berghei chloroquine resistant transporter revealed His95Pro mutation. No variation was identified in Plasmodium berghei multidrug resistance gene-1 (Pbmdr1), Plasmodium berghei deubiquitinating enzyme-1 or Plasmodium berghei Kelch13 domain nucleotide sequences. Amodiaquine resistance is also accompanied by high mRNA transcripts of key transporters; Pbmdr1, V-type/H+ pumping pyrophosphatase-2 and sodium hydrogen ion exchanger-1 and Ca 2+/H + antiporter. Conclusions: Selection of amodiaquine resistance yielded stable "multidrug-resistant'' parasites and thus may be used to study common resistance mechanisms associated with other antimalarial drugs. Genome wide studies may elucidate other functionally important genes controlling AQ resistance in P. berghei.

6.
Am J Trop Med Hyg ; 95(5): 1077-1085, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27601522

RESUMO

Understanding the genetic structure and transmission dynamics of Plasmodium falciparum parasites in malaria-endemic regions is crucial before the implementation of interventions. Located in a high-transmission region of western Kenya where P. falciparum is the predominant species, the Lake Victoria islands are ideal for feasibility of malaria elimination studies. We analyzed genetic variation in eight microsatellite loci to examine parasite population structure and gene flow patterns across five sites. High levels of genetic diversity were measured throughout the region (mean heterozygosity index = 0.84). The overall fixation index value between the sites was 0.044, indicating that approximately 5% of the overall allelic variation is due to differences between the populations. Based on these results, we concluded that parasite population structure in the studied islands is shaped by human migration patterns that maintain extensive parasite gene flow between the sites. Consequently, any malaria elimination and interventions strategies in the study area will have to be carried out broadly on all four islands and adjoining mainland region.


Assuntos
Variação Genética , Plasmodium falciparum/genética , Alelos , Estudos Transversais , DNA de Protozoário/genética , Fluxo Gênico , Loci Gênicos , Técnicas de Genotipagem , Humanos , Ilhas , Quênia , Lagos , Malária Falciparum/epidemiologia , Repetições de Microssatélites , Plasmodium falciparum/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...