Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Breed ; 37(1): 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28127253

RESUMO

Podosphaera leucotricha is the causal agent of powdery mildew (PM) in apple. To reduce the amount of fungicides required to control this pathogen, the development of resistant apple cultivars should become a priority. Resistance to PM was achieved in various crops by knocking out specific members of the MLO gene family that are responsible for PM susceptibility (S-genes). In apple, the knockdown of MdMLO19 resulted in PM resistance. However, since gene silencing technologies such as RNAi are perceived unfavorably in Europe, a different approach that exploits this type of resistance is needed. This work evaluates the presence of non-functional naturally occurring alleles of MdMLO19 in apple germplasm. The screening of the re-sequencing data of 63 apple individuals led to the identification of 627 single nucleotide polymorphisms (SNPs) in five MLO genes (MdMLO5, MdMLO7, MdMLO11, MdMLO18, and MdMLO19), 127 of which were located in exons. The T-1201 insertion of a single nucleotide in MdMLO19 caused the formation of an early stop codon, resulting in a truncated protein lacking 185 amino acids, including the calmodulin-binding domain. The presence of the insertion was evaluated in 115 individuals. It was heterozygous in 64 and homozygous in 25. Twelve of the 25 individuals carrying the insertion in homozygosity were susceptible to PM. After barley, pea, cucumber, and tomato, apple would be the fifth species for which a natural non-functional mlo allele has been found.

2.
J Agric Food Chem ; 63(10): 2750-9, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25723891

RESUMO

In this study, we assessed the main bioactive compounds of a broad apple germplasm collection, composed by 247 accessions of wild (97) and domesticated (150) species. Among the stilbenes, trans- and cis-piceid were found to be ubiquitary components of both wild and cultivated apples. Apple was suggested to be the second dietary source of resveratrols. Results confirmed that the selection pressure of breeding and domestication did not uniformly affect all the phytochemicals contained in apples. For instance, organic acids (malic and ascorbic acid) and some phenolics (stilbenes, hydroxycinnamic acids, and dihydrochalcones) were significantly influenced by selection, while some relevant flavonoids (flavonols and flavan-3-ols) and triterpenoids (ursolic, oleanolic, and betulinic acids) were not. This comprehensive screening will assist in the selection of Malus accessions with specific nutraceutical traits suitable to establish innovative breeding strategies or to patent new functional foods and beverages.


Assuntos
Suplementos Nutricionais/análise , Frutas/química , Malus/química , Cruzamento , Frutas/classificação , Malus/classificação , Resveratrol , Estilbenos/química
3.
Nat Genet ; 42(10): 833-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802477

RESUMO

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.


Assuntos
Duplicação Gênica , Genes de Plantas/genética , Genoma de Planta , Malus/genética , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Ligação Genética , Estudo de Associação Genômica Ampla , Malus/crescimento & desenvolvimento , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...