Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 230: 106395, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278367

RESUMO

Piperine is an alkaloid extracted from the seed of Piper spp., which has demonstrated a larvicidal effect against Ae. aegypti. The incorporation of piperine into nanostructured systems can increase the effectiveness of this natural product in the control of Ae. aegypti larvae. In this study, we evaluated the effectiveness of piperine loaded or not into two nanostructured systems (named NS-A and NS-B) prepared by the nanoprecipitation method. The Ae. aegypti larvae were exposed to different concentrations of piperine loaded or not (2 to 16 ppm) and the mortality was investigated after 24, 48, and 72 hours. The nanostructures prepared were spherical in shape with narrow size distribution and great encapsulation efficiency. The lethal concentration 50 (LC50) for non-loaded piperine were 13.015 ppm (24 hours), 8.098 ppm (48 hours), and 7.248 ppm (72 hours). The LC50 values found for NS-A were 35.378 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours), whereas the values found for NS-B were 21.267 ppm (24 hours), 12.091 ppm (48 hours), and 8.011 ppm (72 hours). Collectively, these findings suggested that non-loaded piperine caused higher larval mortality in the first hours of exposure while the nanostructured systems promoted the slow release of piperine and thereby increased the larvicidal activity over time. Therefore, loading piperine into nanostructured systems might be an effective tool to improve the larval control of vector Ae. aegypti.


Assuntos
Aedes , Alcaloides , Inseticidas , Nanoestruturas , Alcaloides/farmacologia , Animais , Benzodioxóis , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Piperidinas , Extratos Vegetais/química , Polímeros , Alcamidas Poli-Insaturadas
2.
Int J Biol Macromol ; 194: 32-41, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863831

RESUMO

Banana (Musa acuminata) pseudostem cellulose was extracted and acetylated (CA) to prepare membranes with potential use as bio-packages. The CA membrane was embedded by Butia seed (CA-BS) or Butia pulp (CA-BP) extracts obtained from Butia catarinenses (Butia). The produced CA, CA-BS, and CA-BP membranes were evaluated for their physical-chemical, mechanical, thermal, and antibacterial properties. The process for obtaining the cellulose yielded a material with about 92.17% cellulose (DS = 2.85). The purity, cellulose degree acetylation, and the incorporation of Butia extracts into the membranes were confirmed by FTIR. The CA-BS and CA-BP membranes showed a smaller contact angle and higher swelling ratio than the CA membrane. Furthermore, Butia seed or pulp extracts reduced the elastic modulus and deformation at break compared to the CA membrane. The DSC analysis suggested the compatibility between sections and the CA matrix, whereas the TGA analysis confirmed the thermal stability of the membranes. Moreover, less than 1% of the Butia seed and pulp extracts were put into a food simulant media from the membrane. Finally, the CA-BS and CA-BP membranes could inhibit the growth of Staphylococcus aureus and Escherichia coli on their surface, confirming the potential use of these membranes as bio-packaging for food preservation.


Assuntos
Celulose/análogos & derivados , Musa/química , Extratos Vegetais/química , Caules de Planta/química , Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Fenômenos Químicos , Fenômenos Mecânicos , Membranas Artificiais , Embalagem de Produtos , Análise Espectral
3.
Mater Sci Eng C Mater Biol Appl ; 109: 110630, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228905

RESUMO

Polymer-based wafers containing gold nanoparticles (AuNP) were prepared using κ-carrageenan (κC), locust bean gum (LBG) and polyvinyl alcohol (PVA) at ratios of 42/22/13% w/w and 35/15/17% w/w. The synthesized AuNPs were evaluated for their particle size and morphology. The produced wafers containing AuNPs were investigated for their physicochemical, morphological, mechanical, and swelling properties. In addition, bacterial barrier activity and in vitro cytotoxicity were also evaluated in this study. The AuNPs obtained were spherical in shape (~ 10-15 nm in diameter) and exhibited a single bell-shaped UV-vis absorption band centered ~ 540 nm. FT-IR spectra of the wafers containing AuNPs exhibited a shift of ν(O=S=O) absorption band toward a lower wavenumber and a shift of ν(OH) absorption band toward a higher wavenumber due to the coordination of OH groups to AuNPs and their interaction with O=S=O groups of κC, respectively. SEM images confirmed the porous structure of the produced wafers, being the surface area, mechanical properties, and swelling behavior directly affected by changing both the initial amount of [Au+3] and the composition of the wafers. Lastly, the produced wafers showed non-toxicity to NIH-3T3 fibroblast cells, and they also serve as a bacterial barrier. These findings endorsed the claim that the produced wafers containing AuNPs could be a promising material for wound dressing applications.


Assuntos
Bandagens , Carragenina , Galactanos , Ouro , Mananas , Teste de Materiais , Nanopartículas Metálicas/química , Gomas Vegetais , Álcool de Polivinil , Animais , Carragenina/química , Carragenina/farmacologia , Galactanos/química , Galactanos/farmacologia , Ouro/química , Ouro/farmacologia , Mananas/química , Mananas/farmacologia , Camundongos , Células NIH 3T3 , Gomas Vegetais/química , Gomas Vegetais/farmacologia , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia
4.
Waste Manag ; 92: 1-14, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31160018

RESUMO

The objective of this study was to utilize polyethylene terephthalate (PET) and aluminum anodizing sludge (AAS) to produce fire-resistant polyurethane (PU) boards of different densities. Boards with 10%, 20%, 30%, 40% and 50% PET waste as a replacement for the PU raw material were prepared with the addition of 20% aluminum sludge. The products were checked by scanning electron microscopy (SEM) to show that the addition of residues modified the morphology of the alveoli and reduced the compressive strength of the rigid foams. The boards showed combustion deceleration up to flame extinction in the flammability test (UL94) because of the presence of the AAS. The influence of the fillers on the combustion of the specimens without and with 50% PET was observed through SEM images of the preserved and burnt regions of the materials. A reduction in the direct production costs of all the sheets was measured and reached close to 70% in the case of the board with the highest amount of added residues. Therefore, as a way to save natural resources and become more sustainable, it is suggested that the civil construction industry consider the addition of these residues as part of its formulations.


Assuntos
Polietilenotereftalatos , Esgotos , Alumínio , Poliuretanos , Reciclagem
5.
Environ Sci Technol ; 48(5): 2853-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24506223

RESUMO

Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.


Assuntos
Resíduos Industriais , Metais Pesados/química , Esgotos/química , Cromo/química , Galvanoplastia , Temperatura Alta , Resíduos Industriais/análise , Ferro/química , Microscopia Eletrônica de Varredura , Gases em Plasma , Esgotos/análise , Espectrometria por Raios X , Eliminação de Resíduos Líquidos/métodos , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...