Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732013

RESUMO

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Assuntos
Ácido Abscísico , Receptor ERRalfa Relacionado ao Estrogênio , Metabolismo Energético , Receptores de Estrogênio , Receptores de Estrogênio/metabolismo , Humanos , Animais , Ácido Abscísico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Antioxidants (Basel) ; 12(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37759995

RESUMO

The cross-kingdom stress hormone abscisic acid (ABA) and its mammalian receptors LANCL1 and LANCL2 regulate the response of cardiomyocytes to hypoxia by activating NO generation. The overexpression of LANCL1/2 increases transcription, phosphorylation and the activity of eNOS and improves cell vitality after hypoxia/reoxygenation via the AMPK/PGC-1α axis. Here, we investigated whether the ABA/LANCL system also affects the mitochondrial oxidative metabolism and structural proteins. Mitochondrial function, cell cycle and the expression of cytoskeletal, contractile and ion channel proteins were studied in H9c2 rat cardiomyoblasts overexpressing or silenced by LANCL1 and LANCL2, with or without ABA. Overexpression of LANCL1/2 significantly increased, while silencing conversely reduced the mitochondrial number, OXPHOS complex I, proton gradient, glucose and palmitate-dependent respiration, transcription of uncoupling proteins, expression of proteins involved in cytoskeletal, contractile and electrical functions. These effects, and LANCL1/2-dependent NO generation, are mediated by transcription factor ERRα, upstream of the AMPK/PGC1-α axis and transcriptionally controlled by the LANCL1/2-ABA system. The ABA-LANCL1/2 hormone-receptor system controls fundamental aspects of cardiomyocyte physiology via an ERRα/AMPK/PGC-1α signaling axis and ABA-mediated targeting of this axis could improve cardiac function and resilience to hypoxic and dysmetabolic conditions.

3.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834900

RESUMO

The abscisic acid (ABA)/LANC-like protein 1/2 (LANCL1/2) hormone/receptor system regulates glucose uptake and oxidation, mitochondrial respiration, and proton gradient dissipation in myocytes. Oral ABA increases glucose uptake and the transcription of adipocyte browning-related genes in rodent brown adipose tissue (BAT). The aim of this study was to investigate the role of the ABA/LANCL system in human white and brown adipocyte thermogenesis. Immortalized human white and brown preadipocytes, virally infected to overexpress or silence LANCL1/2, were differentiated in vitro with or without ABA, and transcriptional and metabolic targets critical for thermogenesis were explored. The overexpression of LANCL1/2 increases, and their combined silencing conversely reduces mitochondrial number, basal, and maximal respiration rates; proton gradient dissipation; and the transcription of uncoupling genes and of receptors for thyroid and adrenergic hormones, both in brown and in white adipocytes. The transcriptional enhancement of receptors for browning hormones also occurs in BAT from ABA-treated mice, lacking LANCL2 but overexpressing LANCL1. The signaling pathway downstream of the ABA/LANCL system includes AMPK, PGC-1α, Sirt1, and the transcription factor ERRα. The ABA/LANCL system controls human brown and "beige" adipocyte thermogenesis, acting upstream of a key signaling pathway regulating energy metabolism, mitochondrial function, and thermogenesis.


Assuntos
Ácido Abscísico , Prótons , Animais , Humanos , Camundongos , Ácido Abscísico/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Hormônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674711

RESUMO

Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations.


Assuntos
Diabetes Mellitus , Embriófitas , Animais , Humanos , Ácido Abscísico/metabolismo , Miócitos Cardíacos/metabolismo , Neuroproteção , Diabetes Mellitus/tratamento farmacológico , Reguladores de Crescimento de Plantas/fisiologia , Embriófitas/metabolismo , Hormônios , Mamíferos/metabolismo
5.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139463

RESUMO

Abscisic acid (ABA) regulates plant responses to stress, partly via NO. In mammals, ABA stimulates NO production by innate immune cells and keratinocytes, glucose uptake and mitochondrial respiration by skeletal myocytes and improves blood glucose homeostasis through its receptors LANCL1 and LANCL2. We hypothesized a role for the ABA-LANCL1/2 system in cardiomyocyte protection from hypoxia via NO. The effect of ABA and of the silencing or overexpression of LANCL1 and LANCL2 were investigated in H9c2 rat cardiomyoblasts under normoxia or hypoxia/reoxygenation. In H9c2, hypoxia induced ABA release, and ABA stimulated NO production. ABA increased the survival of H9c2 to hypoxia, and L-NAME, an inhibitor of NO synthase (NOS), abrogated this effect. ABA also increased glucose uptake and NADPH levels and increased phosphorylation of Akt, AMPK and eNOS. Overexpression or silencing of LANCL1/2 significantly increased or decreased, respectively, transcription, expression and phosphorylation of AMPK, Akt and eNOS; transcription of NAMPT, Sirt1 and the arginine transporter. The mitochondrial proton gradient and cell vitality increased in LANCL1/2-overexpressing vs. -silenced cells after hypoxia/reoxygenation, and L-NAME abrogated this difference. These results implicate the ABA-LANCL1/2 hormone-receptor system in NO-mediated cardiomyocyte protection against hypoxia.


Assuntos
Ácido Abscísico , Miócitos Cardíacos , Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Abscísico/metabolismo , Animais , Glicemia/metabolismo , Hipóxia Celular , Hormônios/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , NADP/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Acoplados a Proteínas G , Sirtuína 1/metabolismo
6.
Metabolites ; 12(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35736456

RESUMO

Abscisic acid (ABA), a plant hormone, has recently been shown to play a role in glycemia regulation in mammals, by stimulating insulin-independent glucose uptake and metabolism in skeletal muscle. The aim of this study was to test whether ABA could improve glycemic control in a murine model of type 1 diabetes (T1D). Mice were rendered diabetic with streptozotocin and the effect of ABA administration, alone or with insulin, was tested on glycemia. Diabetic mice treated with a single oral dose of ABA and low-dose subcutaneous insulin showed a significantly reduced glycemia profile compared with controls treated with insulin alone. In diabetic mice treated for four weeks with ABA, the effect of low-dose insulin on the glycemia profile after glucose load was significantly improved, and transcription both of the insulin receptor, and of glycolytic enzymes in muscle, was increased. Moreover, a significantly increased transcription and protein expression of AMPK, PGC1-α, and GLUT4 was observed in the skeletal muscle from diabetic mice treated with ABA, compared with untreated controls. ABA supplementation in conjunction with insulin holds the promise of reducing the dose of insulin required in T1D, reducing the risk of hypoglycemia, and improving muscle insulin sensitivity and glucose consumption.

7.
Mol Metab ; 53: 101263, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34098144

RESUMO

OBJECTIVE: Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. METHODS: ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [3H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2-/- and wild-type (WT) siblings. RESULTS: Human recombinant LANCL1 binds ABA with a Kd between 1 and 10 µM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2-/- mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 µg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). CONCLUSIONS: LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ácido Abscísico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sirtuína 1/metabolismo , Glucose/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-33010451

RESUMO

Different strategies to boost NAD+ levels are considered promising means to promote healthy aging and ameliorate dysfunctional metabolism. CD38 is a NAD+-dependent enzyme involved in the regulation of different cell functions. In the context of systemic energy metabolism, it has been demonstrated that brown adipocytes, the parenchymal cells of brown adipose tissue (BAT) as well as beige adipocytes that emerge in white adipose tissue (WAT) depots in response to catabolic conditions, are important to maintain metabolic homeostasis. In this study we aim to understand the functional relevance of CD38 for NAD+ and energy metabolism in BAT and WAT, also using a CD38-/- mouse model. During cold exposure, an increase in NAD+ levels occurred in BAT of wild type mice, together with a marked downregulation of CD38, as detected at the mRNA and protein level. CD38 downregulation was observed also in WAT of cold-exposed mice, where it was accompanied by a strong increase in NADP(H) levels. Accordingly, NAD kinase and glucose-6-phosphate dehydrogenase activities were enhanced in WAT (but not in BAT). Increased NAD+ levels were observed in BAT/WAT from CD38-/- compared with wild type mice, in line with CD38 being a major NAD+-consumer in AT. CD38-/- mice kept at 6 °C had higher levels of Ucp1 and Pgc-1α in BAT and WAT, and increased levels of phosphorylated hormone-sensitive lipase in BAT, compared with wild type mice. These results demonstrate that CD38, by modulating cellular NAD(P)+ levels, is involved in the regulation of thermogenic responses in cold-activated BAT and WAT.


Assuntos
ADP-Ribosil Ciclase 1/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glicoproteínas de Membrana/genética , NADP/metabolismo , NAD/metabolismo , RNA Mensageiro/genética , Termogênese/genética , ADP-Ribosil Ciclase 1/deficiência , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Animais , Temperatura Baixa , Metabolismo Energético/genética , Regulação da Expressão Gênica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Homeostase/genética , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
9.
Nutrients ; 12(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526875

RESUMO

Abscisic acid (ABA) is a hormone with a very long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely the descendants, well before separation of the plant and animal kingdoms, with a conserved role as a signal regulating cell responses to environmental challenges. In mammals, nanomolar ABA controls the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue with an insulin-independent mechanism and increasing energy expenditure in the brown and white adipose tissues. Activation by ABA of AMP-dependent kinase (AMPK), in contrast to the insulin-induced activation of AMPK-inhibiting Akt, is responsible for stimulation of GLUT4-mediated muscle glucose uptake, and for the browning effect on white adipocytes. Intake of micrograms per Kg body weight of ABA improves glucose tolerance in both normal and in borderline subjects and chronic intake of such a dose of ABA improves blood glucose, lipids and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and the metabolic syndrome. This review summarizes the most recent results obtained in vivo with microgram amounts of ABA, the role of the receptor LANCL2 in the hormone's action and the significance of the endowment by mammals of two different hormones controlling the metabolic response to glucose availability. Finally, open issues in need of further investigation and perspectives for the clinical use of nutraceutical ABA are discussed.


Assuntos
Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Síndrome Metabólica/prevenção & controle , Estado Pré-Diabético/prevenção & controle , Ácido Abscísico/administração & dosagem , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Gestacional/sangue , Feminino , Humanos , Inflamação , Insulina/metabolismo , Lipídeos/sangue , Proteínas de Membrana/fisiologia , Proteínas de Ligação a Fosfato/fisiologia , Gravidez , Transdução de Sinais
10.
Sci Rep ; 10(1): 1454, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996711

RESUMO

Abscisic acid (ABA) is a plant hormone active also in mammals where it regulates, at nanomolar concentrations, blood glucose homeostasis. Here we investigated the mechanism through which low-dose ABA controls glycemia and glucose fate. ABA stimulated uptake of the fluorescent glucose analog 2-NBDG by L6, and of [18F]-deoxy-glucose (FDG) by mouse skeletal muscle, in the absence of insulin, and both effects were abrogated by the specific AMPK inhibitor dorsomorphin. In L6, incubation with ABA increased phosphorylation of AMPK and upregulated PGC-1α expression. LANCL2 silencing reduced all these ABA-induced effects. In vivo, low-dose oral ABA stimulated glucose uptake and storage in the skeletal muscle of rats undergoing an oral glucose load, as detected by micro-PET. Chronic treatment with ABA significantly improved the AUC of glycemia and muscle glycogen content in CD1 mice exposed to a high-glucose diet. Finally, both acute and chronic ABA treatment of hypoinsulinemic TRPM2-/- mice ameliorated the glycemia profile and increased muscle glycogen storage. Altogether, these results suggest that low-dose oral ABA might be beneficial for pre-diabetic and diabetic subjects by increasing insulin-independent skeletal muscle glucose disposal through an AMPK-mediated mechanism.


Assuntos
Ácido Abscísico/metabolismo , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Músculo Esquelético/patologia , Mioblastos/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Desoxiglucose/análogos & derivados , Desoxiglucose/metabolismo , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/patologia , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Canais de Cátion TRPM/genética
11.
Nutrients ; 10(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322104

RESUMO

We tested the effect of chronic low-dose abscisic acid (ABA), a phytohormone-regulating human glucose tolerance, on the metabolic parameters that are dysregulated in prediabetes and metabolic syndrome (MS).Ten healthy subjects received 1 µg ABA/Kg body weight (BW)/day as an ABA-rich food supplement: (i) the glycemia profile after a carbohydrate-rich meal, with or without supplement, was compared; (ii) fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol (TC), and body mass index (BMI) after 75 days of daily supplementation of a habitual Mediterranean diet were compared with starting values.CD1 mice were fed a high-glucose diet with or without synthetic ABA (1 µg/Kg BW) for 4 months and the same parameters investigated in the human study were compared. The food supplement significantly reduced the area under the curve of glycemia after a carbohydrate-rich meal and FBG, HbA1c, TC, and BMI after chronic treatment. ABA-treated mice showed a significant reduction of HbA1c, TC, and body weight gain compared with untreated controls. The combined results from the human and murine studies allow us to conclude that the observed improvement of the metabolic parameters can be attributed to ABA and to advocate the use of ABA-containing food supplements in prediabetes and/or MS.


Assuntos
Ácido Abscísico/uso terapêutico , Glicemia/metabolismo , Colesterol/sangue , Hipoglicemiantes/uso terapêutico , Hipolipemiantes/uso terapêutico , Síndrome Metabólica/sangue , Estado Pré-Diabético/sangue , Ácido Abscísico/administração & dosagem , Ácido Abscísico/farmacologia , Adulto , Animais , Área Sob a Curva , Dieta , Suplementos Nutricionais , Feminino , Teste de Tolerância a Glucose , Humanos , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/sangue , Hiperlipidemias/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipolipemiantes/administração & dosagem , Hipolipemiantes/farmacologia , Masculino , Síndrome Metabólica/tratamento farmacológico , Camundongos , Pessoa de Meia-Idade , Reguladores de Crescimento de Plantas , Período Pós-Prandial , Estado Pré-Diabético/tratamento farmacológico , Valores de Referência
12.
FASEB J ; 31(7): 3138-3149, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386046

RESUMO

Sirtuin 6 (SIRT6) is a sirtuin family member involved in a wide range of physiologic and disease processes, including cancer and glucose homeostasis. Based on the roles played by SIRT6 in different organs, including its ability to repress the expression of glucose transporters and glycolytic enzymes, inhibiting SIRT6 has been proposed as an approach for treating type 2 diabetes mellitus (T2DM). However, so far, the lack of small-molecule Sirt6 inhibitors has hampered the conduct of in vivo studies to assess the viability of this strategy. We took advantage of a recently identified SIRT6 inhibitor, compound 1, to study the effect of pharmacological Sirt6 inhibition in a mouse model of T2DM (i.e., in high-fat-diet-fed animals). The administration of the Sirt6 inhibitor for 10 d was well tolerated and improved oral glucose tolerance, it increased the expression of the glucose transporters GLUT1 and -4 in the muscle and enhanced the activity of the glycolytic pathway. Sirt6 inhibition also resulted in reduced insulin, triglycerides, and cholesterol levels in plasma. This study represents the first in vivo study of a SIRT6 inhibitor and provides the proof-of-concept that targeting SIRT6 may be a viable strategy for improving glycemic control in T2DM.-Sociali, G., Magnone, M., Ravera, S., Damonte, P., Vigliarolo, T., Von Holtey, M., Vellone, V. G., Millo, E., Caffa, I., Cea, M., Parenti, M. D., Del Rio, A., Murone, M., Mostoslavsky, R., Grozio, A., Nencioni, A., Bruzzone S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model.


Assuntos
Intolerância à Glucose/metabolismo , Quinazolinonas/farmacologia , Sirtuínas/antagonistas & inibidores , Animais , Glicemia , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Intolerância à Glucose/genética , Células Hep G2 , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinazolinonas/química , Sulfonamidas
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 131-144, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27871880

RESUMO

Abscisic acid (ABA) is a plant hormone also present in animals, where it is involved in the regulation of innate immune cell function and of glucose disposal, through its receptor LANCL2. ABA stimulates glucose uptake by myocytes and pre-adipocytes in vitro and oral ABA improves glycemic control in rats and in healthy subjects. Here we investigated the role of the ABA/LANCL2 system in the regulation of glucose uptake and metabolism in adipocytes. Silencing of LANCL2 abrogated both the ABA- and insulin-induced increase of glucose transporter-4 expression and of glucose uptake in differentiated 3T3-L1 murine adipocytes; conversely, overexpression of LANCL2 enhanced basal, ABA- and insulin-stimulated glucose uptake. As compared with insulin, ABA treatment of adipocytes induced lower triglyceride accumulation, CO2 production and glucose-derived fatty acid synthesis. ABA per se did not induce pre-adipocyte differentiation in vitro, but stimulated adipocyte remodeling in terminally differentiated cells, with a reduction in cell size, increased mitochondrial content, enhanced O2 consumption, increased transcription of adiponectin and of brown adipose tissue (BAT) genes. A single dose of oral ABA (1µg/kg body weight) increased BAT glucose uptake 2-fold in treated rats compared with untreated controls. One-month-long ABA treatment at the same daily dose significantly upregulated expression of BAT markers in the WAT and in WAT-derived preadipocytes from treated mice compared with untreated controls. These results indicate a hitherto unknown role of LANCL2 in adipocyte sensitivity to insulin-stimulated glucose uptake and suggest a role for ABA in the induction and maintenance of BAT activity.


Assuntos
Ácido Abscísico/farmacologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Glucose/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Ratos , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos
14.
Oncotarget ; 7(3): 2968-84, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26658104

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the biosynthesis of intracellular NAD+. NAMPT inhibitors have potent anticancer activity in several preclinical models by depleting NAD+ and ATP levels. Recently, we demonstrated that CD73 enables the utilization of extracellular NAD+/nicotinamide mononucleotide (NMN) by converting them to Nicotinamide riboside (NR), which can cross the plasmamembrane and fuel intracellular NAD+ biosynthesis in human cells. These processes are herein confirmed to also occur in a human ovarian carcinoma cell line (OVCAR-3), by means of CD73 or NRK1 specific silencing. Next, we investigated the anti-tumor activity of the simultaneous inhibition of NAMPT (with FK866) and CD73 (with α, ß-methylene adenosine 5'-diphosphate, APCP), in an in vivo human ovarian carcinoma model. Interestingly, the combined therapy was found to significantly decrease intratumor NAD+, NMN and ATP levels, compared with single treatments. In addition, the concentration of these nucleotides in ascitic exudates was more remarkably reduced in animals treated with both FK866 and APCP compared with single treatments. Importantly, tumors treated with FK866 in combination with APCP contained a statistically significant lower proportion of Ki67 positive proliferating cells and a higher percentage of necrotic area. Finally, a slight but significant increase in animal survival in response to the combined therapy, compared to the single agents, could be demonstrated. Our results indicate that the pharmacological inhibition of CD73 enzymatic activity could be considered as a means to potentiate the anti-cancer effects of NAMPT inhibitors.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Acrilamidas/farmacologia , Trifosfato de Adenosina/análogos & derivados , Citocinas/antagonistas & inibidores , Mononucleotídeo de Nicotinamida/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Neoplasias Ovarianas/terapia , Piperidinas/farmacologia , 5'-Nucleotidase/genética , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Camundongos , Camundongos Nus , NAD/metabolismo , Niacinamida/análogos & derivados , Niacinamida/biossíntese , Compostos de Piridínio , Interferência de RNA , RNA Interferente Pequeno/genética
15.
PLoS One ; 10(10): e0140588, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488296

RESUMO

In recent years, Abscisic Acid (ABA) has been demonstrated to be involved in the regulation of glucose homeostasis in mammals as an endogenous hormone, by stimulating both insulin release and peripheral glucose uptake. In addition, ABA is released by glucose- or GLP-1-stimulated ß-pancreatic cells. Here we investigated whether ABA can stimulate GLP-1 release. The human enteroendocrine L cell line hNCI-H716 was used to explore whether ABA stimulates in vitro GLP-1 secretion and/or transcription. ABA induced GLP-1 release in hNCI-H716 cells, through a cAMP/PKA-dependent mechanism. ABA also enhanced GLP-1 transcription. In addition, oral administration of ABA significantly increased plasma GLP-1 and insulin levels in rats. In conclusion, ABA can stimulate GLP-1 release: this result and the previous observation that GLP-1 stimulates ABA release from ß -cells, suggest a positive feed-back mechanism between ABA and GLP-1, regulating glucose homeostasis. Type 2 diabetes treatments targeting the GLP-1 axis by either inhibiting its rapid clearance by dipeptidyl-peptidase IV or using GLP-1 mimetics are currently used. Moreover, the development of treatments aimed at stimulating GLP-1 release from L cells has been considered as an alternative approach. Accordingly, our finding that ABA increases GLP-1 release in vitro and in vivo may suggest ABA and/or ABA analogs as potential anti-diabetic treatments.


Assuntos
Ácido Abscísico/farmacologia , Glicemia/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/sangue , Hipoglicemiantes/farmacologia , Insulina/sangue , Administração Oral , Animais , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Células Enteroendócrinas/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas de Ligação a Fosfato , Ratos , Ratos Wistar
16.
FASEB J ; 29(12): 4783-93, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26243865

RESUMO

2-Cis,4-trans-abscisic acid (ABA) is a plant hormone that is present also in animals. Several lines of evidence suggest that ABA contributes to the regulation of glycemia in mammals: nanomolar ABA stimulates insulin release from ß-pancreatic cells and glucose transporter-4-mediated glucose uptake by myoblasts and adipocytes in vitro; plasma ABA increases in normal human subjects, but not in diabetic patients, after a glucose load for an oral glucose tolerance test (OGTT). The presence of ABA in fruits prompted an exploration of the bioavailability of dietary ABA and the effect of ABA-rich fruit extracts on glucose tolerance. Rats underwent an OGTT, with or without 1 µg/kg ABA, either synthetic or present in a fruit extract. Human volunteers underwent an OGTT or a standard breakfast and lunch, with or without a fruit extract, yielding an ABA dose of 0.85 or 0.5 µg/kg, respectively. Plasma glucose, insulin, and ABA were measured at different time points. Oral ABA at 0.5-1 µg/kg significantly lowered glycemia and insulinemia in rats and in humans. Thus, the glycemia-lowering effect of low-dose ABA in vivo does not depend on an increased insulin release. Low-dose ABA intake may be proposed as an aid to improving glucose tolerance in patients with diabetes who are deficient in or resistant to insulin.


Assuntos
Ácido Abscísico/farmacologia , Frutas/química , Teste de Tolerância a Glucose , Insulina/sangue , Extratos Vegetais/farmacologia , Ácido Abscísico/isolamento & purificação , Adulto , Animais , Feminino , Humanos , Masculino , Ratos , Ratos Wistar , Adulto Jovem
17.
Thromb Haemost ; 111(2): 308-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24196571

RESUMO

Pharmacological treatments targeting CXC chemokines and the associated neutrophil activation and recruitment into atherosclerotic plaques hold promise for treating cardiovascular disorders. Therefore, we investigated whether FK866, a nicotinamide phosphoribosyltransferase (NAMPT) inhibitor with anti-inflammatory properties that we recently found to reduce neutrophil recruitment into the ischaemic myocardium, would exert beneficial effects in a mouse atherosclerosis model. Atherosclerotic plaque formation was induced by carotid cast implantation in ApoE-/- mice that were fed with a Western-type diet. FK866 or vehicle were administrated intraperitoneally from week 8 until week 11 of the diet. Treatment with FK866 reduced neutrophil infiltration and MMP-9 content and increased collagen levels in atherosclerotic plaques compared to vehicle. No effect on other histological parameters, including intraplaque lipids or macrophages, was observed. These findings were associated with a reduction in both systemic and intraplaque CXCL1 levels in FK866-treated mice. In vitro, FK866 did not affect MMP-9 release by neutrophils, but it strongly reduced CXCL1 production by endothelial cells which, in the in vivo model, were identified as a main CXCL1 source at the plaque level. CXCL1 synthesis inhibition by FK866 appears to reflect interference with nuclear factor-κB signalling as shown by reduced p65 nuclear levels in endothelial cells pre-treated with FK866. In conclusion, pharmacological inhibition of NAMPT activity mitigates inflammation in atherosclerotic plaques by reducing CXCL1-mediated activities on neutrophils. These results support further assessments of NAMPT inhibitors for the potential prevention of plaque vulnerability.


Assuntos
Acrilamidas/farmacologia , Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Artérias Carótidas/efeitos dos fármacos , Doenças das Artérias Carótidas/tratamento farmacológico , Quimiocina CXCL1/metabolismo , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Piperidinas/farmacologia , Placa Aterosclerótica , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/patologia , Artérias Carótidas/enzimologia , Artérias Carótidas/imunologia , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/enzimologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/patologia , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotinamida Fosforribosiltransferase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição RelA/metabolismo
18.
Eur J Pharmacol ; 720(1-3): 7-15, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24211328

RESUMO

Fluridone is a herbicide extensively utilized in agriculture for its documented safety in animals. Fluridone contains a 4(1H)-pyridone and a trifluoromethyl-benzene moiety, which are also present in molecules with analgesic and anti-inflammatory properties. The established absence of adverse effects of Fluridone on animals prompted us to investigate whether it could represent a new anti-inflammatory compound targeting human cells. In stimulated human monocytes, micromolar Fluridone inhibited cyclooxygenase-2 expression and the release of monocyte chemoattractant protein-1 and prostaglandin-E2, to a similar extent as Acetylsalicylic acid. Fluridone also inhibited the proliferation of aortic smooth muscle cells and reduced proliferation and cytokine release by human activated lymphocytes. The mechanism of Fluridone seems to rely on the dose-dependent inhibition of the nuclear translocation of nuclear factor-κB, a transcription factor playing a pivotal role in inflammation. Fluridone also inhibited the release from stimulated human monocytes of abscisic acid, a plant stress hormone recently discovered also in mammalian cells, where it stimulates pro-inflammatory responses. Interestingly, the mechanism of Fluridone's toxicity in plants relies on the inhibition of the enzyme phytoene desaturase, involved in the biosynthetic pathway of ß-carotene, the precursor of absciscic acid in plants. Finally, administration of Fluridone reduced peritoneal inflammation in Zymosan-treated mice. These results suggest that Fluridone could represent a new prototype of anti-inflammatory drug, also active on abscisic acid pro-inflammatory pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Piridonas/farmacologia , Ácido Abscísico/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Aorta/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Citocinas/metabolismo , Dinoprostona/metabolismo , Herbicidas/farmacologia , Herbicidas/uso terapêutico , Liberação de Histamina/efeitos dos fármacos , Humanos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , NF-kappa B/metabolismo , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/metabolismo , Piridonas/uso terapêutico , RNA Mensageiro/metabolismo , Zimosan
19.
J Biol Chem ; 287(49): 40924-37, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23086953

RESUMO

Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca(2+) responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca(2+) channel TRPM2. In turn, TRPM2 and Ca(2+) are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca(2+)-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca(2+)-mobilizing second messengers, in the regulation of Ca(2+)-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.


Assuntos
Cálcio/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , NAD/metabolismo , Neoplasias Pancreáticas/metabolismo , Sirtuínas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Citocinas/metabolismo , Humanos , Inflamação , Interleucina-8/metabolismo , Camundongos , NF-kappa B/metabolismo , RNA Interferente Pequeno/metabolismo , Retroviridae/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
20.
J Biol Chem ; 287(25): 21067-81, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547068

RESUMO

Intracellular NAD(+) levels ([NAD(+)](i)) are important in regulating human T lymphocyte survival, cytokine secretion, and the capacity to respond to antigenic stimuli. NAD(+)-derived Ca(2+)-mobilizing second messengers, produced by CD38, play a pivotal role in T cell activation. Here we demonstrate that [NAD(+)](i) modifications in T lymphocytes affect intracellular Ca(2+) homeostasis both in terms of mitogen-induced [Ca(2+)](i) increase and of endoplasmic reticulum Ca(2+) store replenishment. Lowering [NAD(+)](i) by FK866-mediated nicotinamide phosphoribosyltransferase inhibition decreased the mitogen-induced [Ca(2+)](i) rise in Jurkat cells and in activated T lymphocytes. Accordingly, the Ca(2+) content of thapsigargin-sensitive Ca(2+) stores was greatly reduced in these cells in the presence of FK866. When NAD(+) levels were increased by supplementing peripheral blood lymphocytes with the NAD(+) precursors nicotinamide, nicotinic acid, or nicotinamide mononucleotide, the Ca(2+) content of thapsigargin-sensitive Ca(2+) stores as well as cell responsiveness to mitogens in terms of [Ca(2+)](i) elevation were up-regulated. The use of specific siRNA showed that the changes of Ca(2+) homeostasis induced by NAD(+) precursors are mediated by CD38 and the consequent ADPR-mediated TRPM2 gating. Finally, the presence of NAD(+) precursors up-regulated important T cell functions, such as proliferation and IL-2 release in response to mitogens.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , ADP-Ribose Cíclica/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Mitógenos/farmacologia , NAD/metabolismo , Linfócitos T/metabolismo , Canais de Cátion TRPM/metabolismo , Acrilamidas/farmacologia , Sinalização do Cálcio/fisiologia , Proliferação de Células/efeitos dos fármacos , ADP-Ribose Cíclica/genética , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Ativação do Canal Iônico/fisiologia , Células Jurkat , NAD/genética , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Piperidinas/farmacologia , Linfócitos T/citologia , Canais de Cátion TRPM/genética , Tapsigargina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...